Skip to main content
Log in

Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology


Native lignocellulolytic enzyme systems secreted by filamentous fungi can be further optimized by protein engineering or supplementation of exogenous enzyme components. We developed a protein production and evaluation system in cellulase-producing fungus Penicillium oxalicum. First, by deleting the major amylase gene amy15A, a strain Δ15A producing few extracellular proteins on starch was constructed. Then, three lignocellulolytic enzymes (BGL4, Xyn10B, and Cel12A) with originally low expression levels were successfully expressed with selected constitutive promoters in strain Δ15A. BGL4 and Cel12A overexpression resulted in increased specific filter paper activity (FPA), while the overexpression of Xyn10B improved volumetric FPA but not specific FPA. By switching the culture medium, this platform is convenient to produce originally low-expressed lignocellulolytic enzymes in relatively high purities on starch and to evaluate the effect of their supplementation on the performance of a complex cellulase system on cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others


  1. Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245

    Article  CAS  PubMed  Google Scholar 

  2. Boer H, Teeri TT, Koivula A (2000) Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng 69:486–494

    Article  CAS  PubMed  Google Scholar 

  3. Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y (2010) Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb Technol 46:444–449

    Article  CAS  PubMed  Google Scholar 

  4. Garber RC, Yoder O (1983) Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal, and plasmid components. Anal Biochem 135:416–422

    Article  CAS  PubMed  Google Scholar 

  5. Godbole S, Decker SR, Nieves RA, Adney WS, Vinzant TB, Baker JO, Thomas SR, Himmel ME (1999) Cloning and expression of Trichoderma reesei cellobiohydrolase I in Pichia pastoris. Biotechnol Progr 15:828–833

    Article  CAS  Google Scholar 

  6. Gruber F, Visser J, Kubicek C, Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18:71–76

    Article  CAS  PubMed  Google Scholar 

  7. Herpoel-Gimbert I, Margeot A, Dolla A, Jan G, Molle D, Lignon S, Mathis H, Sigoillot JC, Monot F, Asther M (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:18

    Article  PubMed Central  PubMed  Google Scholar 

  8. Huang X, Lu X, Li JJ (2014) Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillus terreus. J Ind Microbiol Biotechnol 41:585–592

    Article  CAS  PubMed  Google Scholar 

  9. Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS (2008) Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol Biofuels 1:10

  10. Lantz SE, Goedegebuur F, Hommes R, Kaper T, Kelemen BR, Mitchinson C, Wallace L, Stahlberg J, Larenas EA (2010) Hypocrea jecorina CEL6A protein engineering. Biotechnol Biofuels 3:20

    Article  PubMed Central  PubMed  Google Scholar 

  11. Li ZH, Du CM, Zhong YH, Wang TH (2010) Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl Microbiol Biotechnol 87:1065–1076

    Article  CAS  PubMed  Google Scholar 

  12. Liu G, Qin Y, Li Z, Qu Y (2013) Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol Adv 31:962–975

    Article  CAS  PubMed  Google Scholar 

  13. Liu G, Zhang L, Qin Y, Zou G, Li Z, Yan X, Wei X, Chen M, Chen L, Zheng K, Zhang J, Ma L, Li J, Liu R, Xu H, Bao X, Fang X, Wang L, Zhong Y, Liu W, Zheng H, Wang S, Wang C, Xun L, Zhao G, Wang T, Zhou Z, Qu Y (2013) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci Rep 3:1569

    PubMed Central  PubMed  Google Scholar 

  14. Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C, Xun L, Zhao G, Zhou Z, Qu Y (2013) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8:e55185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Messner R, Hagspiel K, Kubicek C (1990) Isolation of a β-glucosidase binding and activating polysaccharide from cell walls of Trichoderma reesei. Arch Microbiol 154:150–155

    Article  CAS  Google Scholar 

  17. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  18. Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164

    Article  CAS  PubMed  Google Scholar 

  20. Penttilä ME, André L, Lehtovaara P, Bailey M, Teeri TT, Knowles JK (1988) Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63:103–112

    Article  PubMed  Google Scholar 

  21. Qu Y, Gao P, Wang Z (1984) Screening of catabolite repression-resistant mutants of cellulase producing Penicillium spp. Acta Mycol Sinica 3:238–243

    Google Scholar 

  22. Sun X, Liu Z, Zheng K, Song X, Qu Y (2008) The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb Technol 42:560–567

    Article  CAS  Google Scholar 

  23. Uzbas F, Sezerman U, Hartl L, Kubicek CP, Seiboth B (2012) A homologous production system for Trichoderma reesei secreted proteins in a cellulase-free background. Appl Microbiol Biotechnol 93:1601–1608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Vogel H (1956) A convenient growth medium for Neurospora (medium N). Microb Genet Bull 13:2–43

    Google Scholar 

  25. Wei X, Zheng K, Chen M, Liu G, Li J, Lei Y, Qin Y, Qu Y (2011) Transcription analysis of lignocellulolytic enzymes of Penicillium decumbens 114-2 and its catabolite-repression-resistant mutant. C R Biol 334:806–811

    Article  CAS  PubMed  Google Scholar 

  26. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    Article  CAS  PubMed  Google Scholar 

Download references


We thank the Grants from the National Basic Research Program of China (2011CB707403), National Natural Sciences Foundation of China (31030001, 30970052 and 31270089), National Key Technology R&D Program (2011BAC02B04), and National High Technology Research and Development Program of China (2012AA022203B).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xin Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1059 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Xue, H., Liu, G. et al. Efficient production and evaluation of lignocellulolytic enzymes using a constitutive protein expression system in Penicillium oxalicum . J Ind Microbiol Biotechnol 42, 877–887 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: