Skip to main content
Log in

Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The Burkholderia cepacia complex (BCC) includes opportunistic pathogenic bacteria that have occasionally been recovered from various pharmaceutical products, including antiseptics and disinfectants. Plausible reasons for the contamination include intrinsic sources, such as inadequate process controls, especially for water or equipment used during product manufacture, or extrinsic sources, such as improper handling and dilution or distribution in contaminated containers. Because the survival of BCC in antiseptics is a concern to the public health and pharmaceutical industry, we determined minimum inhibitory concentrations (MICs) of 36 BCC strains against the antiseptics, following exposure to chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions (1–500 µg/ml for each chemical). Susceptibility to CHX and BZK varied across the BCC strains and was recorded as mean 90.3 and 111.1 µg/ml, respectively, at initial inoculation, which was significantly higher than the 46.4 and 61.1 µg/ml levels measured for BCC incubated in water for 40 days. After determining antiseptic MICs of individual BCC strains, BCC recovery was measured on Tryptic Soy Agar (TSA), Reasoner’s Second Agar (R2A) and diluted preparations of these media under their sub-MICs. The survival of BCC was monitored for 14 days (336 h) in sub-MICs diluted to less than their antiseptic susceptible concentration value. Diluted TSA and R2A media exhibited greater efficiency of recovery for most BCC strains from the CHX and BZK solutions than full strength TSA or R2A. For BCC survival in antiseptic solutions, the cell number of BCC decreased rapidly within the first 20 min in both antiseptics, but after this, recovery remained constant in CHX and increased in BZK over the 14 day incubation period. The results indicate that BCC in water can remain viable with low susceptibility to antiseptics for 14 days, which suggests the necessity for improved detection methods and control measures to monitor BCC contamination in pharmaceutical products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahn Y, Kim JM, Ahn H, Lee Y-J, LiPuma JJ, Hussong D, Cerniglia CE (2014) Evaluation of liquid and solid culture media for the recovery and enrichment of Burkholderia cenocepacia from distilled water. J Ind Microbiol Biotechnol 41(7):1109–1118

    Article  CAS  PubMed  Google Scholar 

  2. Baldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR, Waine DJ, LiPuma JJ, Chiarini L, Dalmastri C, Henry DA, Speert DP, Honeybourne D, Maiden MCJ, Dowson CG (2007) Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis 13(3):458–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Berkelman RL, Lewin S, Allen JR, Anderson RL, Budnick LD, Shapiro S, Friedman SM, Nicholas P, Holzman RS, Haley RW (1981) Pseudobacteremia attributed to contamination of povidone-iodine with Pseudomonas cepacia. Ann Intern Med 95(1):32–36

    Article  CAS  PubMed  Google Scholar 

  4. Boyce JM, Pittet D (2002) Guideline for hand hygiene in health-care settings: recommendations of the healthcare infection control practices advisory committee and the HICPAC/SHEA/APIC/IDSA hand hygiene task force. Infect Cont Hosp Ep 23(S12):S3–S40

    Article  Google Scholar 

  5. Carson LA, Favero MS, Bond WW, Petersen NJ (1973) Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl Microbiol 25(3):476–483

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Carson LA, Tablan OC, Cusick LB, Jarvis WR, Favero MS, Bland LA (1988) Comparative-evaluation of selective media for isolation of Pseudomonas cepacia from cystic-fibrosis patients and environmental sources. J Clin Microbiol 26(10):2096–2100

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Coenye T, Van Acker H, Peeters E, Sass A, Buroni S, Riccardi G, Mahenthiralingam E (2011) Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob Agents Chemother 55(5):1912–1919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. FDA (2013) Enforcement report—week of March 20, 2013. Avaiable via DIALOG http://www.accessdata.fda.gov/scripts/enforcement/enforce_rpt-Product-Tabs.cfm?action=Expand+Index&w=03202013&lang=eng. Accessed 10 Oct 2014

  9. Gilbert SE, Rose LJ (2012) Survival and persistence of nonspore-forming biothreat agents in water. Lett Appl Microbiol 55(3):189–194

    Article  CAS  PubMed  Google Scholar 

  10. Glass MB, Beesley CA, Wilkins PP, Hoffmaster AR (2009) Comparison of four selective media for the isolation of Burkholderia mallei and Burkholderia pseudomallei. Am J Trop Med Hyg 80(6):1023–1028

    PubMed  Google Scholar 

  11. Gnanadhas DP, Marathe SA, Chakravortty D (2013) Biocides—resistance, cross-resistance mechanisms and assessment. Expert Opin Inv Drug 22(2):191–206

    Article  CAS  Google Scholar 

  12. Henry D, Campbell M, McGimpsey C, Clarke A, Louden L, Burns JL, Roe MH, Vandamme P, Speert D (1999) Comparison of isolation media for recovery of Burkholderia cepacia complex from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 37(4):1004–1007

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4(2):221–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jimenez L (2007) Microbial diversity in pharmaceutical product recalls and environments. PDA J Pharm Sci Technol 61(5):383–389

    CAS  PubMed  Google Scholar 

  15. Kaslow RA, Mackel DC, Mallison GF (1976) Nosocomial pseudobacteremia. Positive blood cultures due to contaminated benzalkonium antiseptic. JAMA 236(21):2407–2409

    Article  CAS  PubMed  Google Scholar 

  16. Kido Y, Kodama H, Uraki F, Uyeda M, Tsuruoka M, Shibata M (1988) Microbial degradation of disinfectants. 2. Complete degradation of chlorhexidine. Eisei Kagaku-Jpn. J Tox EnvHealth 34(2):97–101

    CAS  Google Scholar 

  17. Knapp L, Rushton L, Stapleton H, Sass A, Stewart S, Amezquita A, McClure P, Mahenthiralingam E, Maillard JY (2013) The effect of cationic microbicide exposure against Burkholderia cepacia complex (Bcc); the use of Burkholderia lata strain 383 as a model bacterium. J Appl Microbiol 115(5):1117–1126

    Article  CAS  PubMed  Google Scholar 

  18. Kutty PK, Moody B, Gullion JS, Zervos M, Ajluni M, Washburn R, Sanderson R, Kainer MA, Powell TA, Clarke CF, Powell RJ, Pascoe N, Shams A, LiPuma JJ, Jensen B, Noble-Wang J, Arduino MJ, McDonald LC (2007) Multistate outbreak of Burkholderia cenocepacia colonization and infection associated with the use of intrinsically contaminated alcohol-free mouthwash. Chest 132(6):1825–1831

    Article  PubMed  Google Scholar 

  19. Lemke MJ, Leff LG (2006) Culturability of stream bacteria assessed at the assemblage and population levels. Microbial Ecol 51(3):365–374

    Article  Google Scholar 

  20. Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104(6):1539–1551

    Article  CAS  PubMed  Google Scholar 

  21. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3(2):144–156

    Article  CAS  PubMed  Google Scholar 

  22. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Morris S, Gibbs M, Hansman D, Smyth N, Cosh D (1976) Contamination of aqueous dilutions of Resiguard disinfectant with Pseudomonas. Med J Aust 2(3):110–111

    CAS  PubMed  Google Scholar 

  24. Nzula S, Vandamme P, Govan JRW (2002) Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 50(2):265–269

    Article  CAS  PubMed  Google Scholar 

  25. Olapade OA, Gao X, Leff LG (2005) Abundance of three bacterial populations in selected streams. Microbial Ecol 49(3):461–467

    Article  CAS  Google Scholar 

  26. Oliver JD (1995) The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett 133(3):203–208

    Article  CAS  PubMed  Google Scholar 

  27. Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34(4):415–425

    CAS  PubMed  Google Scholar 

  28. Passerat J, Got P, Dukan S, Monfort P (2009) Respective roles of culturable and viable-but-nonculturable cells in the heterogeneity of Salmonella enterica serovar Typhimurium invasiveness. Appl Environ Microbiol 75(16):5179–5185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Patrauchan MA, Oriel PJ (2003) Degradation of benzyldimethylalkylammonium chloride by Aeromonas hydrophila sp. K. J Appl Microbiol 94(2):266–272

    Article  CAS  PubMed  Google Scholar 

  30. Peeters C, Zlosnik JEA, Spilker T, Hird TJ, LiPuma JJ, Vandamme P (2013) Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 36(7):483–489

    Article  PubMed  Google Scholar 

  31. Peeters E, Nelis HJ, Coenye T (2008) Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. J Hosp Infect 70(4):361–368

    Article  CAS  PubMed  Google Scholar 

  32. Pumpuang A, Chantratita N, Wikraiphat C, Saiprom N, Day NPJ, Peacock SJ, Wuthiekanun V (2011) Survival of Burkholderia pseudomallei in distilled water for 16 years. T Roy Soc Trop Med H 105(10):598–600

    Article  Google Scholar 

  33. Robertson J, Levy A, Sagripanti JL, Inglis TJJ (2010) The survival of Burkholderia pseudomallei in liquid media. Am J Trop Med Hyg 82(1):88–94

    Article  PubMed Central  PubMed  Google Scholar 

  34. Rose H, Baldwin A, Dowson CG, Mahenthiralingam E (2009) Biocide susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 63(3):502–510

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Rushton L, Sass A, Baldwin A, Dowson CG, Donoghue D, Mahenthiralingam E (2013) Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob Agents Chemother 57(7):2972–2980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rutala WA, Weber DJ (2004) Disinfection and sterilization in health care facilities: what clinicians need to know. Clin Infect Dis 39(5):702–709

    Article  PubMed  Google Scholar 

  37. Salton MR (1968) Lytic agents, cell permeability, and monolayer penetrability. J Gener Physiol 52(1):227–252

    Article  CAS  Google Scholar 

  38. Setty-Shah N, Maranda L, Candela N, Fong J, Dahod I, Rogol AD, Nwosu BU (2013) Lactose intolerance: lack of evidence for short stature or Vitamin D deficiency in prepubertal children. PLoS One 8(10):e78653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Sobel JD, Hashman N, Reinherz G, Merzbach D (1982) Nosocomial Pseudomonas cepacia infection associated with chlorhexidine contamination. Am J Med 73(2):183–186

    Article  CAS  PubMed  Google Scholar 

  40. Sousa SA, Ramos CG, Leitao JH (2011) Burkholderia cepacia Complex: emerging multihost pathogens equipped with a wide range of virulence factors and determinants. Int J Microbiol. doi:10.1155/2011/607575

    PubMed Central  PubMed  Google Scholar 

  41. Steffan RJ, Sperry KL, Walsh MT, Vainberg S, Condee CW (1999) Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ Sci Technol 33(16):2771–2781

    Article  CAS  Google Scholar 

  42. Thomas L, Maillard JY, Lambert RJ, Russell AD (2000) Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect 46(4):297–303

    Article  CAS  PubMed  Google Scholar 

  43. Tiwari TSP, Ray B, Jost KC Jr, Rathod MK, Zhang Y, Brown-Elliott BA, Hendricks K, Wallace RJ Jr (2003) Forty years of disinfectant failure: outbreak of postinjection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clin Infect Dis 36(8):954–962

    Article  CAS  PubMed  Google Scholar 

  44. Torbeck L, Raccasi D, Guilfoyle DE, Friedman RL, Hussong D (2011) Burkholderia cepacia: this decision is overdue. PDA J Pharm Sci Technol 65(5):535–543

    Article  PubMed  Google Scholar 

  45. Vermis K, Brachkova M, Vandamme P, Nelis H (2003) Isolation of Burkholderia cepacia complex genomovars from waters. Syst Appl Microbiol 26(4):595–600

    Article  CAS  PubMed  Google Scholar 

  46. Weber DJ, Rutala WA, Sickbert-Bennett EE (2007) Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob Agents Chemother 51(12):4217–4224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wright RM, Moore JE, Shaw A, Dunbar K, Dodd M, Webb K, Redmond AO, Crowe M, Murphy PG, Peacock S, Elborn JS (2001) Improved cultural detection of Burkholderia cepacia from sputum in patients with cystic fibrosis. J Clin Pathol 54(10):803–805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecol 8(4):313–323

    Article  CAS  Google Scholar 

  49. Zemel BS, Kawchak DA, Fung EB, Ohene-Frempong K, Stallings VA (2002) Effect of zinc supplementation on growth and body composition in children with sickle cell disease. Am J Clin Nutr 75(2):300–307

    CAS  PubMed  Google Scholar 

  50. Zhang C, Tezel U, Li KX, Liu DF, Ren R, Du JX, Pavlostathis SG (2011) Evaluation and modeling of benzalkonium chloride inhibition and biodegradation in activated sludge. Water Res 45(3):1238–1246

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. John Sutherland and Dr. Kuppan Gokulan for reviewing the manuscript. This work was supported in part by an interagency agreement between the US Department of Energy and the US Food and Drug Administration to the Postgraduate Research Fellowship Program (J. M. Kim) at the National Center for Toxicological Research administered by the Oak Ridge Institute for Science and Education. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngbeom Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.M., Ahn, Y., LiPuma, J.J. et al. Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride. J Ind Microbiol Biotechnol 42, 905–913 (2015). https://doi.org/10.1007/s10295-015-1605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1605-x

Keywords

Navigation