Advertisement

Survival and susceptibility of Burkholderia cepacia complex in chlorhexidine gluconate and benzalkonium chloride

  • Jeong Myeong Kim
  • Youngbeom AhnEmail author
  • John J. LiPuma
  • David Hussong
  • Carl E. Cerniglia
Environmental Microbiology

Abstract

The Burkholderia cepacia complex (BCC) includes opportunistic pathogenic bacteria that have occasionally been recovered from various pharmaceutical products, including antiseptics and disinfectants. Plausible reasons for the contamination include intrinsic sources, such as inadequate process controls, especially for water or equipment used during product manufacture, or extrinsic sources, such as improper handling and dilution or distribution in contaminated containers. Because the survival of BCC in antiseptics is a concern to the public health and pharmaceutical industry, we determined minimum inhibitory concentrations (MICs) of 36 BCC strains against the antiseptics, following exposure to chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions (1–500 µg/ml for each chemical). Susceptibility to CHX and BZK varied across the BCC strains and was recorded as mean 90.3 and 111.1 µg/ml, respectively, at initial inoculation, which was significantly higher than the 46.4 and 61.1 µg/ml levels measured for BCC incubated in water for 40 days. After determining antiseptic MICs of individual BCC strains, BCC recovery was measured on Tryptic Soy Agar (TSA), Reasoner’s Second Agar (R2A) and diluted preparations of these media under their sub-MICs. The survival of BCC was monitored for 14 days (336 h) in sub-MICs diluted to less than their antiseptic susceptible concentration value. Diluted TSA and R2A media exhibited greater efficiency of recovery for most BCC strains from the CHX and BZK solutions than full strength TSA or R2A. For BCC survival in antiseptic solutions, the cell number of BCC decreased rapidly within the first 20 min in both antiseptics, but after this, recovery remained constant in CHX and increased in BZK over the 14 day incubation period. The results indicate that BCC in water can remain viable with low susceptibility to antiseptics for 14 days, which suggests the necessity for improved detection methods and control measures to monitor BCC contamination in pharmaceutical products.

Keywords

Burkholderia cepacia complex Chlorhexidine gluconate Benzalkonium chloride Survival Susceptibility 

Notes

Acknowledgments

We thank Dr. John Sutherland and Dr. Kuppan Gokulan for reviewing the manuscript. This work was supported in part by an interagency agreement between the US Department of Energy and the US Food and Drug Administration to the Postgraduate Research Fellowship Program (J. M. Kim) at the National Center for Toxicological Research administered by the Oak Ridge Institute for Science and Education. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.

References

  1. 1.
    Ahn Y, Kim JM, Ahn H, Lee Y-J, LiPuma JJ, Hussong D, Cerniglia CE (2014) Evaluation of liquid and solid culture media for the recovery and enrichment of Burkholderia cenocepacia from distilled water. J Ind Microbiol Biotechnol 41(7):1109–1118CrossRefPubMedGoogle Scholar
  2. 2.
    Baldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR, Waine DJ, LiPuma JJ, Chiarini L, Dalmastri C, Henry DA, Speert DP, Honeybourne D, Maiden MCJ, Dowson CG (2007) Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis 13(3):458–461CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Berkelman RL, Lewin S, Allen JR, Anderson RL, Budnick LD, Shapiro S, Friedman SM, Nicholas P, Holzman RS, Haley RW (1981) Pseudobacteremia attributed to contamination of povidone-iodine with Pseudomonas cepacia. Ann Intern Med 95(1):32–36CrossRefPubMedGoogle Scholar
  4. 4.
    Boyce JM, Pittet D (2002) Guideline for hand hygiene in health-care settings: recommendations of the healthcare infection control practices advisory committee and the HICPAC/SHEA/APIC/IDSA hand hygiene task force. Infect Cont Hosp Ep 23(S12):S3–S40CrossRefGoogle Scholar
  5. 5.
    Carson LA, Favero MS, Bond WW, Petersen NJ (1973) Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl Microbiol 25(3):476–483PubMedCentralPubMedGoogle Scholar
  6. 6.
    Carson LA, Tablan OC, Cusick LB, Jarvis WR, Favero MS, Bland LA (1988) Comparative-evaluation of selective media for isolation of Pseudomonas cepacia from cystic-fibrosis patients and environmental sources. J Clin Microbiol 26(10):2096–2100PubMedCentralPubMedGoogle Scholar
  7. 7.
    Coenye T, Van Acker H, Peeters E, Sass A, Buroni S, Riccardi G, Mahenthiralingam E (2011) Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob Agents Chemother 55(5):1912–1919CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    FDA (2013) Enforcement report—week of March 20, 2013. Avaiable via DIALOG http://www.accessdata.fda.gov/scripts/enforcement/enforce_rpt-Product-Tabs.cfm?action=Expand+Index&w=03202013&lang=eng. Accessed 10 Oct 2014
  9. 9.
    Gilbert SE, Rose LJ (2012) Survival and persistence of nonspore-forming biothreat agents in water. Lett Appl Microbiol 55(3):189–194CrossRefPubMedGoogle Scholar
  10. 10.
    Glass MB, Beesley CA, Wilkins PP, Hoffmaster AR (2009) Comparison of four selective media for the isolation of Burkholderia mallei and Burkholderia pseudomallei. Am J Trop Med Hyg 80(6):1023–1028PubMedGoogle Scholar
  11. 11.
    Gnanadhas DP, Marathe SA, Chakravortty D (2013) Biocides—resistance, cross-resistance mechanisms and assessment. Expert Opin Inv Drug 22(2):191–206CrossRefGoogle Scholar
  12. 12.
    Henry D, Campbell M, McGimpsey C, Clarke A, Louden L, Burns JL, Roe MH, Vandamme P, Speert D (1999) Comparison of isolation media for recovery of Burkholderia cepacia complex from respiratory secretions of patients with cystic fibrosis. J Clin Microbiol 37(4):1004–1007PubMedCentralPubMedGoogle Scholar
  13. 13.
    Holmes A, Govan J, Goldstein R (1998) Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4(2):221–227CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Jimenez L (2007) Microbial diversity in pharmaceutical product recalls and environments. PDA J Pharm Sci Technol 61(5):383–389PubMedGoogle Scholar
  15. 15.
    Kaslow RA, Mackel DC, Mallison GF (1976) Nosocomial pseudobacteremia. Positive blood cultures due to contaminated benzalkonium antiseptic. JAMA 236(21):2407–2409CrossRefPubMedGoogle Scholar
  16. 16.
    Kido Y, Kodama H, Uraki F, Uyeda M, Tsuruoka M, Shibata M (1988) Microbial degradation of disinfectants. 2. Complete degradation of chlorhexidine. Eisei Kagaku-Jpn. J Tox EnvHealth 34(2):97–101Google Scholar
  17. 17.
    Knapp L, Rushton L, Stapleton H, Sass A, Stewart S, Amezquita A, McClure P, Mahenthiralingam E, Maillard JY (2013) The effect of cationic microbicide exposure against Burkholderia cepacia complex (Bcc); the use of Burkholderia lata strain 383 as a model bacterium. J Appl Microbiol 115(5):1117–1126CrossRefPubMedGoogle Scholar
  18. 18.
    Kutty PK, Moody B, Gullion JS, Zervos M, Ajluni M, Washburn R, Sanderson R, Kainer MA, Powell TA, Clarke CF, Powell RJ, Pascoe N, Shams A, LiPuma JJ, Jensen B, Noble-Wang J, Arduino MJ, McDonald LC (2007) Multistate outbreak of Burkholderia cenocepacia colonization and infection associated with the use of intrinsically contaminated alcohol-free mouthwash. Chest 132(6):1825–1831CrossRefPubMedGoogle Scholar
  19. 19.
    Lemke MJ, Leff LG (2006) Culturability of stream bacteria assessed at the assemblage and population levels. Microbial Ecol 51(3):365–374CrossRefGoogle Scholar
  20. 20.
    Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104(6):1539–1551CrossRefPubMedGoogle Scholar
  21. 21.
    Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3(2):144–156CrossRefPubMedGoogle Scholar
  22. 22.
    McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179PubMedCentralPubMedGoogle Scholar
  23. 23.
    Morris S, Gibbs M, Hansman D, Smyth N, Cosh D (1976) Contamination of aqueous dilutions of Resiguard disinfectant with Pseudomonas. Med J Aust 2(3):110–111PubMedGoogle Scholar
  24. 24.
    Nzula S, Vandamme P, Govan JRW (2002) Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 50(2):265–269CrossRefPubMedGoogle Scholar
  25. 25.
    Olapade OA, Gao X, Leff LG (2005) Abundance of three bacterial populations in selected streams. Microbial Ecol 49(3):461–467CrossRefGoogle Scholar
  26. 26.
    Oliver JD (1995) The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol Lett 133(3):203–208CrossRefPubMedGoogle Scholar
  27. 27.
    Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34(4):415–425PubMedGoogle Scholar
  28. 28.
    Passerat J, Got P, Dukan S, Monfort P (2009) Respective roles of culturable and viable-but-nonculturable cells in the heterogeneity of Salmonella enterica serovar Typhimurium invasiveness. Appl Environ Microbiol 75(16):5179–5185CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Patrauchan MA, Oriel PJ (2003) Degradation of benzyldimethylalkylammonium chloride by Aeromonas hydrophila sp. K. J Appl Microbiol 94(2):266–272CrossRefPubMedGoogle Scholar
  30. 30.
    Peeters C, Zlosnik JEA, Spilker T, Hird TJ, LiPuma JJ, Vandamme P (2013) Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 36(7):483–489CrossRefPubMedGoogle Scholar
  31. 31.
    Peeters E, Nelis HJ, Coenye T (2008) Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. J Hosp Infect 70(4):361–368CrossRefPubMedGoogle Scholar
  32. 32.
    Pumpuang A, Chantratita N, Wikraiphat C, Saiprom N, Day NPJ, Peacock SJ, Wuthiekanun V (2011) Survival of Burkholderia pseudomallei in distilled water for 16 years. T Roy Soc Trop Med H 105(10):598–600CrossRefGoogle Scholar
  33. 33.
    Robertson J, Levy A, Sagripanti JL, Inglis TJJ (2010) The survival of Burkholderia pseudomallei in liquid media. Am J Trop Med Hyg 82(1):88–94CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Rose H, Baldwin A, Dowson CG, Mahenthiralingam E (2009) Biocide susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 63(3):502–510CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Rushton L, Sass A, Baldwin A, Dowson CG, Donoghue D, Mahenthiralingam E (2013) Key role for efflux in the preservative susceptibility and adaptive resistance of Burkholderia cepacia complex bacteria. Antimicrob Agents Chemother 57(7):2972–2980CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Rutala WA, Weber DJ (2004) Disinfection and sterilization in health care facilities: what clinicians need to know. Clin Infect Dis 39(5):702–709CrossRefPubMedGoogle Scholar
  37. 37.
    Salton MR (1968) Lytic agents, cell permeability, and monolayer penetrability. J Gener Physiol 52(1):227–252CrossRefGoogle Scholar
  38. 38.
    Setty-Shah N, Maranda L, Candela N, Fong J, Dahod I, Rogol AD, Nwosu BU (2013) Lactose intolerance: lack of evidence for short stature or Vitamin D deficiency in prepubertal children. PLoS One 8(10):e78653CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Sobel JD, Hashman N, Reinherz G, Merzbach D (1982) Nosocomial Pseudomonas cepacia infection associated with chlorhexidine contamination. Am J Med 73(2):183–186CrossRefPubMedGoogle Scholar
  40. 40.
    Sousa SA, Ramos CG, Leitao JH (2011) Burkholderia cepacia Complex: emerging multihost pathogens equipped with a wide range of virulence factors and determinants. Int J Microbiol. doi: 10.1155/2011/607575 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Steffan RJ, Sperry KL, Walsh MT, Vainberg S, Condee CW (1999) Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater. Environ Sci Technol 33(16):2771–2781CrossRefGoogle Scholar
  42. 42.
    Thomas L, Maillard JY, Lambert RJ, Russell AD (2000) Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect 46(4):297–303CrossRefPubMedGoogle Scholar
  43. 43.
    Tiwari TSP, Ray B, Jost KC Jr, Rathod MK, Zhang Y, Brown-Elliott BA, Hendricks K, Wallace RJ Jr (2003) Forty years of disinfectant failure: outbreak of postinjection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clin Infect Dis 36(8):954–962CrossRefPubMedGoogle Scholar
  44. 44.
    Torbeck L, Raccasi D, Guilfoyle DE, Friedman RL, Hussong D (2011) Burkholderia cepacia: this decision is overdue. PDA J Pharm Sci Technol 65(5):535–543CrossRefPubMedGoogle Scholar
  45. 45.
    Vermis K, Brachkova M, Vandamme P, Nelis H (2003) Isolation of Burkholderia cepacia complex genomovars from waters. Syst Appl Microbiol 26(4):595–600CrossRefPubMedGoogle Scholar
  46. 46.
    Weber DJ, Rutala WA, Sickbert-Bennett EE (2007) Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob Agents Chemother 51(12):4217–4224CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Wright RM, Moore JE, Shaw A, Dunbar K, Dodd M, Webb K, Redmond AO, Crowe M, Murphy PG, Peacock S, Elborn JS (2001) Improved cultural detection of Burkholderia cepacia from sputum in patients with cystic fibrosis. J Clin Pathol 54(10):803–805CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecol 8(4):313–323CrossRefGoogle Scholar
  49. 49.
    Zemel BS, Kawchak DA, Fung EB, Ohene-Frempong K, Stallings VA (2002) Effect of zinc supplementation on growth and body composition in children with sickle cell disease. Am J Clin Nutr 75(2):300–307PubMedGoogle Scholar
  50. 50.
    Zhang C, Tezel U, Li KX, Liu DF, Ren R, Du JX, Pavlostathis SG (2011) Evaluation and modeling of benzalkonium chloride inhibition and biodegradation in activated sludge. Water Res 45(3):1238–1246CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2015

Authors and Affiliations

  • Jeong Myeong Kim
    • 1
  • Youngbeom Ahn
    • 1
    Email author
  • John J. LiPuma
    • 2
  • David Hussong
    • 3
    • 4
  • Carl E. Cerniglia
    • 1
  1. 1.Division of Microbiology, National Center for Toxicological ResearchU.S. Food and Drug AdministrationJeffersonUSA
  2. 2.Department of Pediatrics and Communicable DiseasesUniversity of MichiganAnn ArborUSA
  3. 3.Office of Pharmaceutical Science, Center for Drug Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringUSA
  4. 4.ValSource, LLC.DowningtownUSA

Personalised recommendations