Skip to main content
Log in

Construction of allitol synthesis pathway by multi-enzyme coexpression in Escherichia coli and its application in allitol production

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

An engineered strain for the conversion of d-fructose to allitol was developed by constructing a multi-enzyme coupling pathway and cofactor recycling system in Escherichia coli. d-Psicose-3-epimerase from Ruminococcus sp. and ribitol dehydrogenase from Klebsiella oxytoca were coexpressed to form the multi-enzyme coupling pathway for allitol production. The cofactor recycling system was constructed using the formate dehydrogenase gene from Candida methylica for continuous NADH supply. The recombinant strain produced 10.62 g/l allitol from 100 mM d-fructose. To increase the intracellular concentration of the substrate, the glucose/fructose facilitator gene from Zymomonas mobilis was incorporated into the engineered strain. The results showed that the allitol yield was enhanced significantly to 16.53 g/l with a conversion rate of 92 %. Through optimizing conversion conditions, allitol was produced effectively on a large scale by the whole-cell biotransformation system; the yield reached 48.62 g/l when 500 mM d-fructose was used as the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bäumchen C, Bringer-Meyer S (2007) Expression of glf Z.m . increases d-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:545–552. doi:10.1007/s00253-007-0987-8

    Article  PubMed  Google Scholar 

  2. Chan HC, Zhu Y, Hu Y, Ko TP, Huang CH, Ren F, Chen CC, Ma Y, Guo RT, Sun Y (2012) Crystal structures of d-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars. Protein Cell 3:123–131. doi:10.1007/s13238-012-2026-5

    Article  CAS  PubMed  Google Scholar 

  3. Chandrasekhar B (2010) Synthesis of some monocyclic and bicyclic polyhydroxy nitrogen heterocyclic compounds (Azasugars). PhD Thesis, Indian Institute of Chemical Technology, Hyderabad

  4. Han W, Zhu Y, Men Y, Yang J, Liu C, Sun Y (2014) Production of allitol from d-psicose by a novel isolated strain of Klebsiella oxytoca G4A4. J Basic Microbiol 53:1–7. doi:10.1002/jobm.201300647

    Google Scholar 

  5. Ishida Y, Kamiya T, Itoh H, Kimura Y, Izumori K (1997) Cloning and characterization of the d-tagatose 3-epimerase gene from Pseudomonas cichorii ST-24. J Ferment Bioeng 83:529–534. doi:10.1016/S0922-338X(97)81132-4

    Article  CAS  Google Scholar 

  6. Itoh H, Sato T, Izumori K (1995) Preparation of d-psicose from d-fructose by immobilized d-tagatose 3-epimerase. J Ferment Bioeng 80:101–103. doi:10.1016/0922-338X(95)98186-O

    Article  CAS  Google Scholar 

  7. Izumori K (2006) Izumoring: a strategy for bioproduction of all hexoses. J Biotechnol 124:717–722. doi:10.1016/j.jbiotec.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  8. Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, Shimizu S (1999) Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 51:486–490. doi:10.1007/s002530051421

    Article  CAS  PubMed  Google Scholar 

  9. Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339. doi:10.1007/s00253-003-1470-9

    Article  CAS  PubMed  Google Scholar 

  10. Kim HJ, Hyun EK, Kim YS, Lee YJ, Oh DK (2006) Characterization of an Agrobacterium tumefaciens d-psicose 3-epimerase that converts d-fructose to d-psicose. Appl Environ Microbiol 72:981–985. doi:10.1128/AEM.72.2.981-985.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka M, Shimizu S (2001) Synthesis of optically pure ethyl(S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55:590–595. doi:10.1007/s002530100599

    Article  CAS  PubMed  Google Scholar 

  12. Kornberg HL, Lambourne LTM, Sproul AA (2000) Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli. Proc Natl Acad Sci USA 97:1808–1812. doi:10.1073/pnas.97.4.1808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mu W, Zhang W, Feng Y, Jiang B, Zhou L (2012) Recent advances on applications and biotechnological production of d-psicose. Appl Microbiol Biotechnol 94:1461–1467. doi:10.1007/s00253-012-4093-1

    Article  CAS  PubMed  Google Scholar 

  14. Muniruzzaman S, Kunihisa Y, Ichiraku K, Izumori K (1995) Purification and characterization of a ribitol dehydrogenase from Enterobacter agglomerans strain 221e. J Ferment Bioeng 79:496–498. doi:10.1016/0922-338X(95)91269-B

    Article  CAS  Google Scholar 

  15. Muniruzzaman S, Tokunaga H, Izumori K (1995) Conversion of d-psicose to allitol by Enterobacter agglomerans strain 221e. J Ferment Bioeng 79:323–327. doi:10.1016/0922-338X(95)93989-W

    Article  CAS  Google Scholar 

  16. Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Characterization of the Zymomonas mobilis glucose gacilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Mol Microbiol 15:759–802. doi:10.1111/j.1365-2958.1995.tb02350.x

    Article  Google Scholar 

  17. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci USA 106:1760–1765. doi:10.1073/pnas.0813167106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Takeshita K, Ishida Y, Takada G, Izumori K (2000) Direct production of allitol from d-fructose by a coupling reaction using d-tagatose 3-epimerase, ribitol dehydrogenase and formate dehydrogenase. J Biosci Bioeng 90:545–548. doi:10.1016/S1389-1723(01)80038-4

    Article  CAS  PubMed  Google Scholar 

  19. Walton AZ, Stewart JD (2004) Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20:403–411. doi:10.1021/bp030044m

    Article  CAS  PubMed  Google Scholar 

  20. Wang Q (2006) Metabolic engineering of Escherichia coli for high yield of succinic acid. Ph.D. Dissertation, Tianjin University, Tianjin, China

  21. Weisser P, Krämer R, Sahm H, Sprenger GA (1995) Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 177:3351–3354

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Wu J, Du G, Zhou J, Chen J (2013) Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 16:48–55. doi:10.1016/j.ymben.2012.11.009

    Article  PubMed  Google Scholar 

  23. Yamamoto H, Matsuyama A, Kobayashi Y (2003) Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues. Appl Microbiol Biotechnol 61:133–139. doi:10.1007/s00253-002-1188-0

    Article  CAS  PubMed  Google Scholar 

  24. Yang J, Zhu Y, Li J, Men Y, Sun Y, Ma Y (2014) Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum. Biotechnol Bioeng. doi:10.1002/bit.25345

    PubMed Central  Google Scholar 

  25. Zhang L, Mu W, Jiang B, Zhang T (2009) Characterization of d-tagatose-3-epimerase from Rhodobacter sphaeroides that converts d-fructose into d-psicose. Biotechnol Lett 31:857–862. doi:10.1007/s10529-009-9942-3

    Article  CAS  PubMed  Google Scholar 

  26. Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50. doi:10.1016/j.ymben.2013.02.002

    Article  CAS  PubMed  Google Scholar 

  27. Zhou P, Li S, Xu H, Feng X, Ouyang P (2012) Construction and co-expression of plasmid encoding xylitol dehydrogenase and a cofactor regeneration enzyme for the production of xylitol from d-arabitol. Enzyme Microb Tech 51:119–124. doi:10.1016/j.enzmictec.2012.05.002

    Article  CAS  Google Scholar 

  28. Zhu Y, Men Y, Bai W, Li X, Zhang L, Sun Y, Ma Y (2012) Overexpression of d-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in d-psicose production. Biotechnol Lett 34:1901–1906. doi:10.1007/s10529-012-0986-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31101303), the High Technology and Research Development Program (2013AA102102), and the Key Programs of the Chinese Academy of Sciences (KSZD-EW-Z-019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueli Zhang.

Additional information

Y. Zhu and H. Li have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, H., Liu, P. et al. Construction of allitol synthesis pathway by multi-enzyme coexpression in Escherichia coli and its application in allitol production. J Ind Microbiol Biotechnol 42, 661–669 (2015). https://doi.org/10.1007/s10295-014-1578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1578-1

Keywords

Navigation