Advertisement

Genetic improvement of native xylose-fermenting yeasts for ethanol production

  • Nicole K. Harner
  • Xin Wen
  • Paramjit K. Bajwa
  • Glen D. Austin
  • Chi-Yip Ho
  • Marc B. Habash
  • Jack T. Trevors
  • Hung LeeEmail author
Review

Abstract

Lignocellulosic substrates are the largest source of fermentable sugars for bioconversion to fuel ethanol and other valuable compounds. To improve the economics of biomass conversion, it is essential that all sugars in potential hydrolysates be converted efficiently into the desired product(s). While hexoses are fermented into ethanol and some high-value chemicals, the bioconversion of pentoses in hydrolysates remains inefficient. This remains one of the key challenges in lignocellulosic biomass conversion. Native pentose-fermenting yeasts can ferment both glucose and xylose in lignocellulosic biomass to ethanol. However, they perform poorly in the presence of hydrolysate inhibitors, exhibit low ethanol tolerance and glucose repression, and ferment pentoses less efficiently than the main hexoses glucose and mannose. This paper reviews classical and molecular strain improvement strategies applied to native pentose-fermenting yeasts for improved ethanol production from xylose and lignocellulosic substrates. We focus on Pachysolen tannophilus, Scheffersomyces (Candida) shehatae, Scheffersomyces (Pichia) stipitis, and Spathaspora passalidarum which are good ethanol producers among the native xylose-fermenting yeasts. Strains obtained thus far are not robust enough for efficient ethanol production from lignocellulosic hydrolysates and can benefit from further improvements.

Keywords

Adaptation Cofactor imbalance Genome shuffling Metabolic engineering Protoplast fusion Random mutagenesis Xylose reductase 

Notes

Acknowledgments

Our research on native pentose-fermenting yeasts was supported by the NSERC Bioconversion Network, BioFuelNet Canada and Ontario Ministry of Agriculture, Food and Rural Affairs.

References

  1. 1.
    Amartey S, Jeffries T (1996) An improvement in Pichia stipitis fermentation of acid-hydrolysed hemicellulose achieved by overliming (calcium hydroxide treatment) and strain adaptation. World J Microbiol Biotechnol 12:281–283PubMedCrossRefGoogle Scholar
  2. 2.
    Bajwa PK, Harner NK, Richardson TL, Sidhu S, Habash MB, Trevors JT, Lee H (2013) Genome shuffling protocol for the pentose-fermenting yeast Scheffersomyces stipitis. In: Gupta VK, Tuohy MG, Ayyachamy M, Turner KM, O’Donovan A (eds) Laboratory protocols in fungal biology: current methods in fungal biology. Springer, New York, pp 447–454CrossRefGoogle Scholar
  3. 3.
    Bajwa PK, Phaenark C, Grant N, Zhang X, Paice M, Martin VJJ, Trevors JT, Lee H (2011) Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresour Technol 102:9965–9969PubMedCrossRefGoogle Scholar
  4. 4.
    Bajwa PK, Pinel D, Martin VJJ, Trevors JT, Lee H (2010) Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J Microbiol Methods 81:179–186PubMedCrossRefGoogle Scholar
  5. 5.
    Bajwa PK, Shireen T, D’Aoust F, Pinel D, Martin VJJ, Trevors JT, Lee H (2009) Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol Bioeng 104:892–900PubMedCrossRefGoogle Scholar
  6. 6.
    Barbosa MDS, Lee H, Schneider H, Forsberg CW (1990) Temperature mediated changes of d-xylose metabolism in the yeast Pachysolen tannophilus. FEMS Microbiol Lett 72:35–40CrossRefGoogle Scholar
  7. 7.
    Batt CA, Carvallo S, Easson DD, Akedo M, Sinskey AJ (1986) Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae. Biotechnol Bioeng 28:549–553PubMedCrossRefGoogle Scholar
  8. 8.
    Bengtsson O, Hahn-Hagerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9–18PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bicho PA, Runnals PL, Cunningham JD, Lee H (1988) Induction of xylose reductase and xylitol dehydrogenase activities in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl Environ Microbiol 54:50–54PubMedCentralPubMedGoogle Scholar
  10. 10.
    Biot-Pelletier D, Martin VJJ (2014) Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol 98:3877–3887PubMedCrossRefGoogle Scholar
  11. 11.
    Bruinenberg PM, Debot PHM, van Dijken JP, Scheffers WA (1983) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 18:287–292CrossRefGoogle Scholar
  12. 12.
    Bruinenberg PM, Debot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260CrossRefGoogle Scholar
  13. 13.
    Chen YL (2011) Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J Ind Microbiol Biot 38:581–597CrossRefGoogle Scholar
  14. 14.
    Clark T, Wedlock N, James AP, Deverell K, Thornton RJ (1986) Strain improvement of xylose-fermenting yeast Pachysolen tannophilus by hybridization of two mutant strains. Biotechnol Lett 8:801–806CrossRefGoogle Scholar
  15. 15.
    Dmytruk OV, Dmytruk KV, Abbas CA, Voronovsky AY, Sibirny AA (2008) Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb Cell Fact 7:21–28PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Duitama J, Sanchez-Rodriguez A, Goovaerts A, Pulido-Tamayo S, Hubmann G, Foulquie-Moreno MR, Thevelein JM, Verstrepen KJ, Marchal K (2014) Improved linkage analysis of Quantitative Trait Loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast. BMC Genomics 15:207–221PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800PubMedCrossRefGoogle Scholar
  18. 18.
    Giudici P, Solieri L, Pulvirenti AM, Cassanelli S (2005) Strategies and perspectives for genetic improvement of wine yeasts. Appl Microbiol Biotechnol 66:622–628PubMedCrossRefGoogle Scholar
  19. 19.
    Gong CS, McCracken LD, Tsao GT (1981) Direct fermentation of d-xylose to ethanol by a xylose-fermenting yeast mutant, Candida sp XF-217. Biotechnol Lett 3:245–250CrossRefGoogle Scholar
  20. 20.
    Gupthar AS (1987) Construction of a series of Pichia stipitis strains with increased DNA contents. Curr Genet 12:605–610CrossRefGoogle Scholar
  21. 21.
    Harner NK, Bajwa PK, Habash MB, Trevors JT, Austin GD, Lee H (2014) Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid. Antonie van Leeuwenhoek 105:29–43PubMedCrossRefGoogle Scholar
  22. 22.
    Hou LH (2010) Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:1084–1093PubMedCrossRefGoogle Scholar
  23. 23.
    Hou X (2012) Anaerobic xylose fermentation by Spathaspora passalidarum. Appl Microbiol Biotechnol 94:205–214PubMedCrossRefGoogle Scholar
  24. 24.
    Hou XR, Yao S (2012) Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion. Appl Microbiol Biotechnol 93:2591–2601PubMedCrossRefGoogle Scholar
  25. 25.
    Huang CF, Lin TH, Guo GL, Hwang WS (2009) Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour Technol 100:3914–3920PubMedCrossRefGoogle Scholar
  26. 26.
    Hughes SR, Gibbons WR, Bang SS, Pinkelman R, Bischoff KM, Slininger PJ, Qureshi N, Kurtzman CP, Liu SQ, Saha BC, Jackson JS, Cotta MA, Rich JO, Javers JE (2012) Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars. J Ind Microbiol Biotechnol 39:163–173PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hutter A, Oliver SG (1998) Ethanol production using nuclear petite yeast mutants. Appl Microbiol Biotechnol 49:511–516PubMedCrossRefGoogle Scholar
  28. 28.
    Jeffries TW (1981) Conversion of xylose to ethanol under aerobic conditions by Candida tropicalis. Biotechnol Lett 3:213–218CrossRefGoogle Scholar
  29. 29.
    Jeffries TW (1984) Mutants of Pachysolen tannophilus showing enhanced rates of growth and ethanol formation from d-xylose. Enzym Microb Technol 6:254–258CrossRefGoogle Scholar
  30. 30.
    Jeffries TW (1985) Emerging technology for fermenting d-xylose. Trends Biotechnol 3:208–212CrossRefGoogle Scholar
  31. 31.
    Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326PubMedCrossRefGoogle Scholar
  32. 32.
    Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509PubMedCrossRefGoogle Scholar
  33. 33.
    Jeffries TW, Kurtzman CP (2004) Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzym Microb Tech 16:922–932CrossRefGoogle Scholar
  34. 34.
    Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hagerdal R, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93:665–673PubMedCrossRefGoogle Scholar
  35. 35.
    Johannsen E, Eagle L, Bredenhann G (1985) Protoplast fusion used for the construction of presumptive polyploids of the d-xylose fermenting yeast Candida shehatae. Curr Genet 9:313–319CrossRefGoogle Scholar
  36. 36.
    Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK (2003) Structure of xylose reductase bound to NAD(+) and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases. Biochem J 373:319–326PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Khattab SMR, Saimura M, Kodaki T (2013) Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase. J Biotechnol 165:153–156PubMedCrossRefGoogle Scholar
  38. 38.
    Khattab SMR, Watanabe S, Saimura M, Kodaki T (2011) A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Biochem Biophys Res Commun 404:634–637PubMedCrossRefGoogle Scholar
  39. 39.
    Kim JH, Block DE, Mills DA (2010) Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 88:1077–1085PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedCrossRefGoogle Scholar
  41. 41.
    Knoll M, Pleiss J (2008) The medium chain dehydrogenase/reductase engineering database: a systematic analysis of a diverse protein family to understand sequence structure function relationship. Protein Sci 17:1689–1697PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Kostrzynska M, Sopher CR, Lee H (1998) Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiol Lett 159:107–112PubMedCrossRefGoogle Scholar
  43. 43.
    Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sustain Energy Rev 15:4950–4962CrossRefGoogle Scholar
  44. 44.
    Kuhn A, van Zyl C, van Tonder A, Prior BA (1995) Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61:1580–1585PubMedCentralPubMedGoogle Scholar
  45. 45.
    Kumari R, Pramanik K (2012) Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Appl Biochem Biotechnol 167:873–884PubMedCrossRefGoogle Scholar
  46. 46.
    Kumari R, Pramanik K (2012) Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. J Biosci Bioeng 114:622–629PubMedCrossRefGoogle Scholar
  47. 47.
    Lee H (1992) Reversible inactivation of d-xylose utilization by d-glucose in pentose-fermenting yeast Pachysolen tannophilus. FEMS Microbiol Lett 92:1–4Google Scholar
  48. 48.
    Lee H (1998) The structure and function of yeast xylose (aldose) reductases. Yeast 14:977–984PubMedCrossRefGoogle Scholar
  49. 49.
    Lee H, James AP, Zahab DM, Mahmourides G, Maleszka R, Schneider H (1986) Mutants of Pachysolen tannophilus with improved production of ethanol d-xylose. Appl Environ Microbiol 51:1252–1258PubMedCentralPubMedGoogle Scholar
  50. 50.
    Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Li Y, Park JY, Shiroma R, Ike M, Tokuyasu K (2012) Improved ethanol and reduced xylitol production from glucose and xylose mixtures by the mutant strain of Candida shehatae ATCC 22984. Appl Biochm Biotechnol 166:1781–1790CrossRefGoogle Scholar
  52. 52.
    Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121:451–460PubMedCrossRefGoogle Scholar
  53. 53.
    Lohmeier-Vogel EM, Sopher CR, Lee H (1998) Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts. J Ind Microbiol Biotechnol 20:75–81CrossRefGoogle Scholar
  54. 54.
    Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW (2012) Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum. Appl Environ Microbiol 78:5492–5500PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Ma MG, Liu LZ (2010) Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Micrbiol 10:169–188CrossRefGoogle Scholar
  56. 56.
    Mahmourides G, Lee H, Maki N, Schneider H (1985) Ethanol accumulation in cultures of Pachysolen tannophilus on d-xylose is associated with a transition to a state of low oxygen consumption. Biotechnology 3:59–62CrossRefGoogle Scholar
  57. 57.
    Maleszka R, James AP, Schneider H (1983) Ethanol production from various sugars by strains of Pachysolen tannophilus bearing different numbers of chromosomes. J Gen Microbiol 129:2495–2500Google Scholar
  58. 58.
    Maleszka R, Schneider H (1982) Concurrent production and consumption of ethanol by cultures of Pachysolen tannophilus growing on d-xylose. Appl Environ Microbiol 44:909–912PubMedCentralPubMedGoogle Scholar
  59. 59.
    Mamoori YI, Yahya AI, AL-Jelawi MH (2013) Expression of xylose reductase enzyme from Spathaspora passalidarum in Saccharomyces cerevisiae. Iraqi J Sci 54:316–323Google Scholar
  60. 60.
    Metzger MH, Hollenberg CP (1995) Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme binding domain affect the coenzyme specificity. Eur J Biochem 228:50–54PubMedCrossRefGoogle Scholar
  61. 61.
    Neirinck LG, Maleszka R, Schneider H (1984) The requirement of oxygen for incorporation of carbon from d-xylose and d-glucose by Pachysolen tannophilus. Arch Biochem Biophys 228:13–21PubMedCrossRefGoogle Scholar
  62. 62.
    Nigam JN (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208–215PubMedCrossRefGoogle Scholar
  63. 63.
    Panchal CJ, Bast L, Russell I, Stewart GG (1988) Repression of xylose utilization by glucose in xylose-fermenting yeasts. Can J Microbiol 34:1316–1320CrossRefGoogle Scholar
  64. 64.
    Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712PubMedCrossRefGoogle Scholar
  65. 65.
    Persson B, Hallborn J, Walfridsson M, Hahn-Hagerdal B, Keranen S, Penttila M, Jornvall H (1993) Dual relationships of xylitol and alcohol dehydrogenases in families of 2 protein types. FEBS Lett 324:9–14PubMedCrossRefGoogle Scholar
  66. 66.
    Petri R, Schmidt-Dannert C (2004) Dealing with complexity: evolutionary engineering and genome shuffling. Curr Opin Biotechnol 15:298–304PubMedCrossRefGoogle Scholar
  67. 67.
    Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem J 385:75–83PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Petschacher B, Nidetzky B (2005) Engineering Candida tenuis xylose reductase for improved utilization of NADH: antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl Environ Microbiol 71:6390–6393PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Petschacher B, Nidetzky B (2008) Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact 7:9–20PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Richardson TL, Harner NK, Bajwa PK, Trevors JT, Lee H (2011) Approaches to deal with toxic inhibitors during fermentation of lignocellulosic substrates. In: Zhu JJY, Zhang X, Pan XJ (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass. ACS Symposium Series; American Chemical Society, Washington, D.C., pp 171–202CrossRefGoogle Scholar
  71. 71.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291PubMedCrossRefGoogle Scholar
  72. 72.
    Schneider H, Lee H, Barbosa MDS, Kubicek CP, James AP (1989) Physiological properties of a mutant of Pachysolen tannophilus deficient in NADPH-dependent d-xylose reductase. Appl Environ Microbiol 55:2877–2881PubMedCentralPubMedGoogle Scholar
  73. 73.
    Schneider H, Mahmourides G, Labelle JL, Lee H, Maki N, McNeill HJ (1985) Correlation between limitation of growth of Pachysolen tannophilus on d-xylose with the formation of ethanol and other products. Biotechnol Lett 7:361–364CrossRefGoogle Scholar
  74. 74.
    Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion of d-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92CrossRefGoogle Scholar
  75. 75.
    Shi NQ, Cruz J, Sherman F, Jeffries TW (2002) SHAM sensitive alternative respiration in the xylose metabolizing yeast Pichia stipitis. Yeast 19:1203–1220PubMedCrossRefGoogle Scholar
  76. 76.
    Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15:1021–1030PubMedCrossRefGoogle Scholar
  77. 77.
    Slininger PJ, Bothast RJ, Van Cauwenberge JE, Kurtzman CP (1982) Conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng 24:371–384PubMedCrossRefGoogle Scholar
  78. 78.
    Sreenath HK, Jeffries TW (1997) Diminished respirative growth and enhanced assimilative sugar uptake result in higher specific fermentation rates by the mutant Pichia stipitis FPL-061. Appl Biochem Biotechnol 63–65:109–116PubMedCrossRefGoogle Scholar
  79. 79.
    Sreenath HK, Jeffries TW (1999) 2-deoxyglucose as a selective agent for derepressed mutants of Pichia stipitis. Appl Biochem Biotechnol 77:211–222CrossRefGoogle Scholar
  80. 80.
    Stoutenburg RM, Perrotta JA, Nakas JP (2011) Overcoming inhibitors in a hemicellulosic hydrolysate: improving fermentability by feedstock detoxification and adaptation of Pichia stipitis. J Ind Microbiol Biotechnol 38:1939–1945PubMedCrossRefGoogle Scholar
  81. 81.
    Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang YD, Demeke M, Foulquie-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22:975–984PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Tamakawa H, Ikushima S, Yoshida S (2011) Ethanol Production from xylose by a recombinant Candida utilis strain expressing protein-engineered xylose reductase and xylitol dehydrogenase. Biosci Biotechnol Biochem 75:1994–2000PubMedCrossRefGoogle Scholar
  83. 83.
    Tamakawa H, Ikushima S, Yoshida S (2013) Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method. J Biosci Bioeng 115:532–539PubMedCrossRefGoogle Scholar
  84. 84.
    Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microb 75:5761–5772CrossRefGoogle Scholar
  85. 85.
    Tran AV, Chambers RP (1985) Red oak wood derived inhibitors in the ethanol fermentation of xylose by Pichia stipitis CBS-5776. Biotechnol Lett 7:841–845CrossRefGoogle Scholar
  86. 86.
    Wang JF, Wei DQ, Lin Y, Wang YH, Du HL, Li YX, Chou KC (2007) Insights from modeling the 3D structure of NAD(P)H-dependent d-xylose reductase of Pichia stipitis and its binding interactions with NAD and NADP. Biochem Biophys Res Commun 359:323–329PubMedCrossRefGoogle Scholar
  87. 87.
    Wang PY, Johnson BF, Schneider H (1980) Fermentation of d-xylose by yeasts using glucose isomerase in the medium to convert d-xylose to d-xylulose. Biotechnol Lett 2:273–278CrossRefGoogle Scholar
  88. 88.
    Watanabe S, Abu Saleh A, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP(+)-dependent xylitol dehydrogenase. J Biotechnol 130:316–319PubMedCrossRefGoogle Scholar
  89. 89.
    Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349PubMedCrossRefGoogle Scholar
  90. 90.
    Watanabe T, Watanabe I, Yamamoto M, Ando A, Nakamura T (2011) A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour Technol 102:1844–1848PubMedCrossRefGoogle Scholar
  91. 91.
    Webb SR, Lee H (1990) Regulation of d-xylose utilization by hexoses in pentose-fermenting yeasts. Biotechnol Adv 8:685–697PubMedCrossRefGoogle Scholar
  92. 92.
    Wedlock DN, James AP, Thornton RJ (1989) Glucose-negative mutants of Pachysolen tannophilus. J Gen Microbiol 135:2019–2026Google Scholar
  93. 93.
    Wedlock DN, Thornton RJ (1989) A hexokinase associated with catabolite repression in Pachysolen tannophilus. J Gen Microbiol 135:2013–2018Google Scholar
  94. 94.
    Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49:113–120PubMedCrossRefGoogle Scholar
  95. 95.
    Yan F, Bai FL, Tian S, Zhang JX, Zhang ZY, Yang XS (2009) Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate. Appl Biochem Biotechnol 157:473–482PubMedCrossRefGoogle Scholar
  96. 96.
    Yang XS, Zhang SJ, Zuo Z, Men X, Tian S (2011) Ethanol production from the enzymatic hydrolysis of non-detoxified steam-exploded corn stalk. Bioresour Technol 102:7840–7844PubMedCrossRefGoogle Scholar
  97. 97.
    Yoon GS, Lee TS, Kim C, Seo JH, Ryu YW (1996) Characterization of alcohol fermentation and segregation of protoplast fusant of Saccharomyces cerevisiae and Pichia stipitis. J Microbiol Biotechnol 6:286–291Google Scholar
  98. 98.
    Zeng Q, Du H, Zhai Z, Lin X, Lin Y (2008) Mutational research on the role of lysine 21 in the Pichia stipitis xylose reductase. Chin J Biotechnol 24:1108–1111CrossRefGoogle Scholar
  99. 99.
    Zhang W, Geng AL (2012) Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method. Biotechnol Biofuels 5:46–57PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2014

Authors and Affiliations

  • Nicole K. Harner
    • 1
  • Xin Wen
    • 1
  • Paramjit K. Bajwa
    • 1
  • Glen D. Austin
    • 2
  • Chi-Yip Ho
    • 3
    • 4
  • Marc B. Habash
    • 1
  • Jack T. Trevors
    • 1
  • Hung Lee
    • 1
    Email author
  1. 1.School of Environmental SciencesUniversity of GuelphGuelphCanada
  2. 2.BP BiofuelsSan DiegoUSA
  3. 3.Microarray Laboratory, Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada
  4. 4.Centre for Systems Biology, Lunenfeld-Tanenbaum Research InstituteMount Sinai HospitalTorontoCanada

Personalised recommendations