Skip to main content
Log in

The selective roles of chaperone systems on over-expression of human-like collagen in recombinant Escherichia coli

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Human-like collagen (HLC) is a novel biomedical material with promising applications. Usually, insoluble HLC was formed due to over-expression. In order to improve the production of soluble HLC, the effective chaperone proteins and their mediation roles on HLC were clarified. Trigger factor (TF) pathway with low specificity and high binding affinity to nascent chains could increase soluble HLC expression; GroEL-GroES could increase the expression level of HLC by assisting the correct folding of HLC and increase mRNA level of the gene coding for HLC by enhancing mRNA stability. DnaK chaperone system did not work positively on soluble HLC due to the unbalanced ratio of DnaK:DnaJ:GrpE, especially too high GrpE significantly inhibited DnaK-mediated refolding. The production of soluble HLC with co-expression of exogenous TF and GroEL-GroES was increased by 35.3 % in comparison with the highest value 0.26 g/L reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhandari P, Gowrishankar J (1997) An Escherichia coli host strain useful for efficient overproduction of cloned gene products with NaCl as the inducer. J Bacteriol 179:4403–4406

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Friess W (1998) Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136

    Article  PubMed  CAS  Google Scholar 

  3. Pati F, Adhikari B, Dhara S (2010) Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol 101:3737–3742

    Article  PubMed  CAS  Google Scholar 

  4. Fan DD, Luo YE, Mi Y, Ma XX, Shang LA (2005) Characteristics of fed-batch cultures of recombinant Escherichia coli containing human-like collagen cDNA at different specific growth rates. Biotechnol Lett 27:865–870

    Article  PubMed  CAS  Google Scholar 

  5. Smirnova GV, Oktiabr’skiĭ ON (1985) Effect of acetate on the growth of Escherichia coli during aerobiosis and anaerobiosis. Mikrobiologiia 54:252–256

    PubMed  CAS  Google Scholar 

  6. Zhu CH, Fan DD, Duan ZG, Xue WJ, Shang LA, Chen FL, Luo YE (2009) Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. J Biomed Mater Res A 89:829–840

    Article  PubMed  Google Scholar 

  7. Wang Y, Cui FZ, Zhai Y, Wang XM, Kong XD, Fan DD (2006) Investigations of the initial stage of recombinant human-like collagen mineralization. Mat Sci Eng C Mater 26:635–638

    Article  Google Scholar 

  8. Zabriskie DW, Wareheim DA, Polansky MJ (1987) Effects of fermentation feeding strategies prior to induction of expression of a recombinant malaria antigen in Escherichia coli. J Ind Microbiol 2:87–95

    Article  CAS  Google Scholar 

  9. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  PubMed  CAS  Google Scholar 

  10. Nishihara K (1998) Chaperone Coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microbiol 64:1694–1699

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  12. Cui SS, Lin XZ, Shen JH (2011) Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Protein Expres Purif 77:166–172

    Article  CAS  Google Scholar 

  13. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Mol Biol R 60:512–538

    CAS  Google Scholar 

  14. Rehdorf J, Kirschner A, Bornscheuer UT (2007) Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnol Lett 29:1393–1398

    Article  PubMed  CAS  Google Scholar 

  15. Fan DD, Duan MR, Mi Y, Song JR, Xi JF, Wang DW, Wang GZ (2002) High density fermentation of recombinant E. coli for production of human-like collagen. J Chem Ind Eng 53:752–754 (In Chinese)

    CAS  Google Scholar 

  16. Nishihara K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Guo L, Luo YE, Fan DD, Xu R, Hui JF, Ma XX, Zhu CH (2012) Improved productivity of recombinant human-like collagen II by supplying amino acids encoded by rare codons. Afr J Microbiol Res 6:3856–3865

    CAS  Google Scholar 

  18. Korz DJ, Rinas U, Hellmuth K, Sander EA, Deckwer WD (1995) Simple fed-batch technique for high cell density cultivation of Escherichia coli. Biotechnol 39:59–65

    CAS  Google Scholar 

  19. Yin MW, Nan YM, Wang XM (1994) Improvement of the spectrophotometric method for the determination of hydroxyproline. J Henan Med Univ 29:74–77

    Google Scholar 

  20. Qiagen, The QIA expressionist (2001) A handbook for high-level expression and purification of 6xHis-tagged proteins. 3rd edn. Hilden, Germany, pp 79–80

  21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  22. Blum P, Ory J, Bauernfeind J, Krska J (1992) Physiological consequence of DnaK and DnaJ overproduction in Escherichia coli. J Bacteriol 174:7436–7444

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Guo JQ, Luo YE, Fan DD, Gao PF, Ma XX, Zhu CH (2010) Analysis of metabolic products by response surface methodology for production of human-like collagen II. Biotechnol Appl Biochem 18:830–836

    CAS  Google Scholar 

  24. Mogk A, Tomoyasu T, Goloubinoff P, Rudigerm S, Roder D, Langen H, Bukau B (1999) Identification of thermo labile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Robin S, Togashi DM, Ryder AG, Wall JG (2009) Trigger Factor from the psychrophilic bacterium psychrobacter frigidicola is a monomeric chaperone. J Bacteriol 191:1162–1168

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    Article  PubMed  CAS  Google Scholar 

  27. Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N (2004) Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–596

    Article  PubMed  CAS  Google Scholar 

  28. Schiene-Fischer C, Habazettl J, Schmid FX, Fischer G (2002) The hsp70 chaperone DnaK is a secondary amide peptide bond cis-trans isomerase. Nat Struct Biol 9:419–424

    Article  PubMed  CAS  Google Scholar 

  29. Hyunjin Y, Hong JY, Ryu S (2008) Effects of chaperones on mRNA stability and gene expression in Escherichia coli. J Microbiol Biotechnol 18:228–233

    Google Scholar 

  30. Endo S, Tomimoto Y, Shimizu H, Taniguchi Y, Onizuka T (2006) Effects of E. coli chaperones on the solubility of human receptors in an in vitro expression system. Mol Biotechnol 33:199–209

    Article  PubMed  CAS  Google Scholar 

  31. Patzelt H, Rudiger S, Brehmer D, Kramer G, Vorderwulbecke S, Schaffitzel E, Waitz A, Hesterkamp T, Dong L, Schneider-Mergener J, Bukau B, Deuerling E (2001) Binding specificity of Escherichia coli trigger factor. Proc Natl Acad Sci USA 98:14244–14249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Fenton WA, Horwich AL (2003) Chaperonin-mediated protein folding: fate of substrate polypeptide. Q Rev Biophys 36:229–256

    Article  PubMed  CAS  Google Scholar 

  33. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  PubMed  CAS  Google Scholar 

  34. Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696

    Article  PubMed  CAS  Google Scholar 

  35. Calloni G, Chen TT, Schermann SM, Chang HC, Genevaux P, Agostini F, Tartaglia GG, Hayer-Hartl M, Hartl FU (2012) DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1:251–264

    Article  PubMed  CAS  Google Scholar 

  36. Caplan AJ, Cyr DM, Douglas MG (1993) Eukaryotic homologues of Escherichia coli DnaJ: a diverse protein family that functions with hsp70 stress proteins. Mol Biol Cell 4:555–563

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Pierpaoli EV, Sandmeier E, Schönfeld HJ, Christen P (1998) Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE. J Biol Chem 273:6643–6649

    Article  PubMed  CAS  Google Scholar 

  38. Szabo A, Langer T, Schröder H, Flanagan J, Bukau B, Hartl FU (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ and GrpE. Proc Natl Acad Sci USA 91:10345–10349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The DnaK protein modulates the heat shock response of Escherichia coli. Cell 34:641–646

    Article  PubMed  CAS  Google Scholar 

  40. Grimshaw JP, Siegenthaler RK, Züger S, Schönfeld HJ, Z’graggen BR, Christen P (2005) The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE (G122D) with DnaK. J Mol Biol 353:888–896

    Article  PubMed  CAS  Google Scholar 

  41. Sugimoto S, Saruwatari K, Higashi C, Sonomoto K (2008) The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK-DnaJ-GrpE chaperone system and for cell division. Microbiol 154:1876–1885

    Article  CAS  Google Scholar 

  42. Georgellis D, Sohlberg B, Hartl FU, von Gabin A (1995) Identification of GroEL as a constituent of an mRNA-protection complex in Escherichia coli. Mol Microbiol 16:1259–1268

    Article  PubMed  CAS  Google Scholar 

  43. Bouvet P, Belasco JG (1992) Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature 360:488–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China [21176200]; the Scientific Research Program of Shaanxi Provincial Department of Education, China [2010JC21]; and Shaanxi Biochemical Engineering Key Discipline Program, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan’e Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Q., Luo, Y. The selective roles of chaperone systems on over-expression of human-like collagen in recombinant Escherichia coli . J Ind Microbiol Biotechnol 41, 1667–1675 (2014). https://doi.org/10.1007/s10295-014-1500-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1500-x

Keywords

Navigation