Skip to main content
Log in

O-Succinyl-l-homoserine-based C4-chemical production: succinic acid, homoserine lactone, γ-butyrolactone, γ-butyrolactone derivatives, and 1,4-butanediol

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

There has been a significant global interest to produce bulk chemicals from renewable resources using engineered microorganisms. Large research programs have been launched by academia and industry towards this goal. Particularly, C4 chemicals such as succinic acid (SA) and 1,4-butanediol have been leading the path towards the commercialization of biobased technology with the effort of replacing chemical production. Here we present O-Succinyl-l-homoserine (SH) as a new, potentially important platform biochemical and demonstrate its central role as an intermediate in the production of SA, homoserine lactone (HSL), γ-butyrolactone (GBL) and its derivatives, and 1,4-butanediol (BDO). This technology encompasses (1) the genetic manipulation of Escherichia coli to produce SH with high productivity, (2) hydrolysis into SA and homoserine (HS) or homoserine lactone hydrochloride, and (3) chemical conversion of either HS or homoserine lactone HCL (HSL·HCl) into drop-in chemicals in polymer industry. This production strategy with environmental benefits is discussed in the perspective of targeting of fermented product and a process direction compared to petroleum-based chemical conversion, which may reduce the overall manufacturing cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cheng K-K, Zhao X-B, Zeng J, Zhang JA (2012) Biotechnological production of succinic acid: current state and perspectives. Biofuels Bioprod Biorefin 6(3):302–318

    Article  CAS  Google Scholar 

  2. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hong K-K, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69(16):2671–2690

    Article  CAS  PubMed  Google Scholar 

  4. Ju JY, Lee KH, Bae HA (2012) microorganism which produces l-amino acid and method for producing l-amino acid using the same. US Patent 20120252078 A1

  5. Kumar D, Gomes J (2005) Methionine production by fermentation. Biotechnol Adv 23(1):41–61

    Article  CAS  PubMed  Google Scholar 

  6. Lee JH, Lee DE, Lee BU, Kim HS (2003) Global analyses of transcriptomes and proteomes of a parent strain and an l-threonine-overproducing mutant strain. J Bacteriol 185(18):5442–5451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lerner CG, Inouye M (1990) Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res 18(15):4631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lin H, Bennett GN, San KY (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7(2):116–127

    Article  CAS  PubMed  Google Scholar 

  9. Muska CF, Alles C (2005) Biobased 1,3-propanediol a new platform chemical for the 21st century. BioPerspectives 2005 BREW symposium. http://www.chem.uu.nl/brew/BREWsymposiumWiesbaden11-mei2005/WEBSITEBrewPresentations51105.PDF

  10. Nagaraja KRR, Stephen T (2005) Method of synthesizing diketopiperazines. US Patent 6,967,202

  11. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459

    Article  CAS  PubMed  Google Scholar 

  12. Park YH, Lee BC, Cho KM, Kim DC, Shin YU, Lee JH (2007) Escherichia coli can produce l-threonine and includes prokaryotic and eukaryotic microorganisms having an inactivated galR gene. US Patent 7,229,794 B2

  13. Paul JD, George WH (2014) Biomass at the shale gas crossroads. Green Chem 16:382–383

    Article  Google Scholar 

  14. Roe AJ, O’Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148(Pt7):2215–2222

    CAS  PubMed  Google Scholar 

  15. Shin YU, Kim SY, Chang JS, Cho YW, Lee HJ, Heo IK, Na KH, Seo CI, Kim CH, Um HW (2010) Microorganism producing l-methionine precursor and the method of producing l-methionine precursor using the microorganism. US Patent 7,851,180

  16. Shiue TW, Chen YH, Wu CM, Singh G, Chen HY, Hung CH, Liaw WF, Wang YM (2012) Nitric oxide turn-on fluorescent probe based on deamination of aromatic primary monoamines. Inorg Chem 51(9):5400–5408

    Article  CAS  PubMed  Google Scholar 

  17. US Department of Energy (2004) Top value added chemicals from biomass: volume I. http://www1.eere.energy.gov/biomass/pdfs/35523.pdf

  18. Upare PP, Lee JM, Hwang YK, Hwang DW, Lee JH, Halligudi SB, Hwang JS, Chang JS (2011) Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts. ChemSusChem 4(12):1749–1752

    Article  CAS  PubMed  Google Scholar 

  19. Vennestrøm PN, Osmundsen CM, Christensen CH, Taarning E (2011) Beyond petrochemicals: the renewable chemicals industry. Angew Chem Int Ed Engl 50(45):10502–10509

    Article  PubMed  Google Scholar 

  20. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Lyeol Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, KK., Kim, J.H., Yoon, J.H. et al. O-Succinyl-l-homoserine-based C4-chemical production: succinic acid, homoserine lactone, γ-butyrolactone, γ-butyrolactone derivatives, and 1,4-butanediol. J Ind Microbiol Biotechnol 41, 1517–1524 (2014). https://doi.org/10.1007/s10295-014-1499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1499-z

Keywords

Navigation