Skip to main content
Log in

Endophytic fungi: expanding the arsenal of industrial enzyme producers

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Endophytic fungi, mostly belonging to the Ascomycota, are found in the intercellular spaces of the aerial plant parts, particularly in leaf sheaths, sometimes even within the bark and root system without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce a wide range of enzymes and secondary metabolites exhibiting a variety of biological activities. However, they have been only barely exploited as sources of enzymes of industrial interest. This review emphasizes the suitability and possible advantages of including the endophytic fungi in the screening of new enzyme producing organisms as well as in studies aiming to optimize the production of enzymes through well-known culture processes. Apparently endophytic fungi possess the two types of extracellular enzymatic systems necessary to degrade the vegetal biomass: (1) the hydrolytic system responsible for polysaccharide degradation consisting mainly in xylanases and cellulases; and (2) the unique oxidative ligninolytic system, which degrades lignin and opens phenyl rings, comprises mainly laccases, ligninases and peroxidases. The obvious ability of endophytic fungi to degrade the complex structure of lignocellulose makes them useful in the exploration of the lignocellulosic biomass for the production of fuel ethanol and other value-added commodity chemicals. In addition to this, endophytic fungi may become new sources of industrially useful enzymes such as lipases, amylases and proteases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abrahão MRE, Molina G, Pastore GM (2013) Endophytes: recent developments in biotechnology and the potential for flavor production. Food Res Int 52:367–372

    Google Scholar 

  2. Aime MC, Brearley F (2012) Tropical fungal diversity: closing the gap between species estimates and species discovery. Biodivers Conserv 21:2177–2180

    Google Scholar 

  3. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    CAS  PubMed  Google Scholar 

  4. Amirita A, Sindhu P, Swetha J, Vasanthi NS, Kannan KP (2012) Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World J Sci Technol 2:13–19

    CAS  Google Scholar 

  5. Aragão VC, Anschau A, Porciuncula BDA, Thiesen C, Kalil SJ, Burkert CAV, Burkert JFM (2009) Síntese enzimática do butirato de isoamila empregando lipases microbianas comerciais. Quim Nova 32:2268–2272

    Google Scholar 

  6. Araújo WL, Lima AOS, Azevedo JL, Marcon J (2002) Manual: isolamento de microrganismos endofíticos, 1st edn. CALQ, São Paulo

    Google Scholar 

  7. Artanti N, Tachibana S, Kardoro LBS, Sukinan H (2011) Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana. Pak J Biol Sci 14:1019–1023

    CAS  PubMed  Google Scholar 

  8. Azevedo JL, Araújo WL (2007) Diversity and applications of endophytic fungi isolated from tropical plants. In: Ganguli BN, Deshmukh SK (eds) Fungi: multifaceted microbes. CRC Press, Boca Raton

    Google Scholar 

  9. Azevedo JL, Maccheroni W Jr, Araújo WL, Pereira JO (2002) Microrganismos endofíticos e seu papel em plantas tropicais. In: Serafini LA, Barros MN, Azevedo JL (eds) Biotecnologia: avanços na agricultura e na agroindústria, 1st edn. EDUCS, Caxias do Sul, pp 233–268

    Google Scholar 

  10. Ban Y, Tang M, Chen H, Xu Z, Zhang H, Yang Y (2012) The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS One 7:e47968

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Banerjee AC, Kundu A, Ghosh SK (2003) Genetic manipulation of filamentous fungi. In: Roussos S (ed) New horizons in biotechnology. Kluwer Academic Publishers, Dordrecht (Neth), pp 193–198

    Google Scholar 

  12. Baraban EG, Morin JB, Phillips GM, Phillips AJ, Strobel SA (2013) Xyolide, a bioactive nonenolide from an Amazonian endophytic fungus, Xylaria feejeensis. Tetrahidron Lett 54:4058–4069

    CAS  Google Scholar 

  13. Barrett AJ, Rawlings ND, Woessner JF (2003) The handbook of proteolytic enzymes, 2nd edn. Academic Press, London

    Google Scholar 

  14. Bernardi-Wenzel J, Garcia A, Rubin-Filho CJ, Prioli AJ, Pamphile JA (2010) Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol Res 43:375–384

    PubMed  Google Scholar 

  15. Bezerra JD, Santos MG, Svedese VM, Lima DM, Fernandes MJ, Paiva LM, Souza-Motta CM (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    CAS  PubMed  Google Scholar 

  16. Bhagobaty RK, Joshi SR (2012) Enzymatic activity of fungi endophytic on five medicinal plant species of the pristine sacred forests of Meghalaya, India. Biotechnol Bioprocess Eng 17:33–40

    CAS  Google Scholar 

  17. Bhargav S, Panda BP, Ali M, Javed S (2008) Solid-state fermentation: an overview. Chem Biochem Eng Q 22:49–70

    CAS  Google Scholar 

  18. Bills GF, González-Menéndez V, Martín J, Platas G, Fournier J, Persoh D, Stadler M (2012) Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. PLoS One 7:e46687

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bischoff KM, Wicklow DT, Jordan DB, de Rezende ST, Liu S, Hughes SR, Rich JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58:499–503

    CAS  PubMed  Google Scholar 

  20. Blackwell M (2011) The fungi: 1, 2, 3… 5.1 million species? Am J Bot 98:426–438

    PubMed  Google Scholar 

  21. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    CAS  PubMed  Google Scholar 

  22. Borges W, Borges K, Bonato P, Said S, Pupo MT (2009) Endophytic fungi: natural products, enzymes and biotransformation reactions. Curr Org Chem 13:1137–1163

    CAS  Google Scholar 

  23. Braaksma M, Punt PJ (2008) Aspergillus as a cell factory for protein production: controlling protease activity in fungal production. In: Goldman GH, Osmani SA (eds) The Aspergilli: genomics, medical aspects, biotechnology, and research methods. CRC Press, Boca Raton, pp 441–455

    Google Scholar 

  24. Bradner JR, Gillings M, Nevalainen KMH (1999) Qualitative assessment of hydrolytic activities in antarctic micro fungi grown at different temperatures on solid media. World J Microbiol Biotechnol 15:131–132

    Google Scholar 

  25. Brundrett MC (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    PubMed  Google Scholar 

  26. Cabezas L, Calderon C, Medina M, Bahamon I, Cardenas M, Bernal AJ, Gonzalez A, Restrepo S (2012) Characterization of cellulases of fungal endophytes isolated from Espeletia spp. J Microbiol 50:1009–1013

    CAS  PubMed  Google Scholar 

  27. Calvez TL, Burgaud G, Mahe S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    PubMed Central  PubMed  Google Scholar 

  28. Carroll G, Petrini O (1983) Patterns of substrate utilization by some fungal endophytes from coniferous foliage. Mycologia 75:53–63

    Google Scholar 

  29. Champreda V, Kanokratana P, Sripang R, Tanapongpipat S, Eurwilaichitr L (2007) Purification, biochemical characterization, and gene cloning of a new extracellular thermotolerant and glucose tolerant maltooligosaccharide-forming amylase from an endophytic ascomycete Fusicoccum sp. BCC 4124. Biosci Biotech Biochem 71:2010–2020

    CAS  Google Scholar 

  30. Chaverri P, Gazis RO (2011) Linking ex planta fungi with their endophytic stages: Perisporiopsis, a common leaf litter and soil fungus, is a frequent endophyte of Hevea spp. and other plants. Fungal Ecol 4:94–102

    Google Scholar 

  31. Chen H-Y, Xue D-S, Feng X-Y, Yao S-J (2011) Screening and production of ligninolytic enzyme by a marine-derived fungal Pestalotiopsis sp. J63. Appl Biochem Biotechnol 165:1754–1769

    CAS  PubMed  Google Scholar 

  32. Chen Y, Xie X-G, Ren C-G, Dai C-C (2013) Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol 129:568–574

    CAS  PubMed  Google Scholar 

  33. Cliffe K (1988) Downstream processing. In: Scragg A (ed) Biotechnology for engineers: biological systems in technological processes. Ellis Horwood Ltd., Chichester, pp 302–321

    Google Scholar 

  34. Costa AM, Kadowaki MK, Minozzo MK, Souza CGM, Boer CG, Bracht A, Peralta RM (2012) Production, purification and characterization of tannase from Aspergillus tamarii. Afr J Biotechnol 11:391–398

    Google Scholar 

  35. Dalla-Vecchia R, Nascimento MG, Soldi V (2004) Aplicações sintéticas de lipases imobilizadas em polímeros. Quim Nova 27:623–630

    CAS  Google Scholar 

  36. Damasso MCT, Passionoto MA, Freitas SC, Freire DMG, Lago RCA, Couri S (2008) Utilization of agroindustrial residues for lipase production by solid–state fermentation. Braz J 39:676–681

    Google Scholar 

  37. Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AC, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7:1–10

    Google Scholar 

  38. Debashish G, Malay S, Barindra S, Joudeep M (2005) Marine enzymes. Adv Biochem Eng Biotechnol 96:189–218

    CAS  PubMed  Google Scholar 

  39. Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi—ecological and chemical perspectives. Fungal Divers 57:45–83

    Google Scholar 

  40. Devi NN, Prabakaran JJ, Wahab F (2012) Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac J Trop Biomed 2:S1280–S1284

    Google Scholar 

  41. Dey P, Banerjee J, Marti M (2011) Comparative lipid profiling of two endophytic fungal isolates Colletrotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol 102:5815–5823

    CAS  PubMed  Google Scholar 

  42. Diaz JCM, Rodríguez S, Roussos J, Cordova A, Abousalham A, Carriére F, Baratti J (2006) Lipases from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb Technol 39:1042–1050

    Google Scholar 

  43. Dicosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474

    CAS  PubMed  Google Scholar 

  44. Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes: factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480

    PubMed  Google Scholar 

  45. Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195

    CAS  PubMed  Google Scholar 

  46. El-Zayat SA (2008) Preliminary studies on laccase production by Chaetomium globosum and endophytic fungus in Glinus lotoides. Am Eurasian J Agric Environ Sci 3:86–90

    Google Scholar 

  47. Frey M, Stettner C, Pare PW, Schmelz EA, Tumlinson JH, Gierl A (2000) An herbivore elicitor activates the gene for indole emission in maize. Proc Natl Acad Sci USA 97:14801–14806

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Ganley RJ, Sniezko RA, Newcombe G (2008) Endophyte-mediated resistance against white pine blister rust in Pinus monticola. For Ecol Manag 255:2751–2760

    Google Scholar 

  49. Gao S-S, Li X-M, Du F-Y, Li C-S, Proksch P, Wang B-G (2011) Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar Drugs 9:59–70

    CAS  PubMed Central  Google Scholar 

  50. Gao Y, Zhao JT, Zu YG, Fu YJ, Wang W, Luo M, Efferth T (2011) Characterization of five fungal endophytes producing cajaninstilbene acid isolated from pigeon pea [Cajanus cajan (L.) Mill sp]. PLoS One 6:e27589

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Garcia A, Rhoden SA, Bernardi-Wenzel J, Orlandelli RC, Azevedo JL, Pamphile JA (2012) Antimicrobial activity of crude extracts of endophytic fungi isolated from medicinal plant Sapindus saponaria L. J Appl Pharm Sci 2:035–040

    Google Scholar 

  52. Garcia A, Rhoden SA, Rubin-Filho CJ, Nakamura CV, Pamphile JA (2012) Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L. and their localization by scanning electron microscopy. Biol Res 45:139–148

    CAS  PubMed  Google Scholar 

  53. Gibbs MD, Reeves RA, Bergquist PL (1995) Cloning, sequencing, and expression of a xylanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1 and activity of the enzyme on fiber-bound substrate. Appl Environ Microbiol 61:4403–4440

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Goldbeck R, Ramos MM, Pereira GAG, Maugeri-Filho F (2013) Cellulase production from a new strain Acremonium strictum isolated from the Brazilian biome using different substrates. Bioresour Technol 128:797–803

    CAS  PubMed  Google Scholar 

  55. Harun A, James RMJ, Lim SM, Majeed ABA, Cole ALJ, Ramasamy K (2011) BACE1 inhibitory activity of fungal endophytic extracts from Malaysian medicinal plants. BMC Complement Altern Med 11:79

    PubMed Central  PubMed  Google Scholar 

  56. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    CAS  Google Scholar 

  57. Hegde SV, Ramesha A, Srinvas C (2011) Optimization of amylase production from an endophytic fungi Discosia sp. isolated from Calophyllum inophyllum. Int J Agric Technol 7:805–813

    Google Scholar 

  58. Hong X, Zhang XJ, Liu BB, Mao YJ, Liu YD, Zhao LP (2010) Structural differentiation of bacterial communities in indole-degrading bioreactors denitrifying and sulfate-reducing conditions. Res Microbiol 161:687–693

    CAS  PubMed  Google Scholar 

  59. Ilyas M, Kanti A, Jamal Y, Herdina AA (2009) Biodiversity of endophytic fungi associated with Gambieruncaria roxb. (Rubiaceae) from west Sumatra. Biodiversitas 10:23–28

    Google Scholar 

  60. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    CAS  PubMed  Google Scholar 

  61. Jalgaonwala RE, Mahajan RT (2011) Evaluation of hydrolytic enzyme activities of endophytes from some indigenous medicinal plants. J Agric Technol 7:1733–1741

    Google Scholar 

  62. Jegannathan KR, Nielsen PH (2013) Environmental assessment of enzyme use in industrial production—a literature review. J Clean Prod 42:228–240

    CAS  Google Scholar 

  63. Johnston PR, Sutherland PW, Joshee S (2006) Visualising endophytic fungi within leaves by detection of (1 → 3)-ß-d-glucans in fungal cell walls. Mycologist 20:159–162

    Google Scholar 

  64. Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H, Lee I-J (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Khan AL, Waqas M, Hamayun M, Al-Harrasi A, Al-Rawahi A, Lee I-J (2013) Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol 13:51

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Kharwar R, Gond SK, Kumar A, Mishra A (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucaliptus citriodora Hook., and their antimicrobial activity. World J Microbiol Biotechnol 26:1941–1948

    Google Scholar 

  67. Koide K, Osono T, Takeda H (2005) Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience 46:280–286

    Google Scholar 

  68. Koide K, Osono T, Takeda H (2005) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Google Scholar 

  69. Kusari S, Singh S, Jayabaskaran C (2014) Biotechnological potential of plant-associated endophytic fungi: hope versus hype. Trends Biotechnol 32:297–303

    CAS  PubMed  Google Scholar 

  70. Kusari S, Spiteller M (2011) Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat Prod Rep 28:1203–1207

    CAS  PubMed  Google Scholar 

  71. Lakshmi PJ, Selvi KV (2013) Anticancer potentials of secondary metabolites from endophytes of Barringtonia acutangula and its molecular characterization. Int J Curr Microbiol App Sci 2:44–45

    Google Scholar 

  72. Lemons A, Clay K, Rudgers JA (2005) Connecting plant -microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    PubMed  Google Scholar 

  73. Li Q, Marek P, Iverson BL (2013) Commercial proteases: present and future. FEBS Lett 587:1155–1163

    CAS  PubMed  Google Scholar 

  74. Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:1–11. doi:10.5936/csbj.201209017

    Google Scholar 

  75. Maciel GM, Bracht A, Souza CGM, Costa AM, Peralta RM (2012) Fundamentals, diversity and application of white-rot fungi. In: Silva AP, Sol M (eds) Fungi: types, environmental impact and role in disease. Nova Science Publishers Inc., United States, pp 409–458

    Google Scholar 

  76. Mahajan RT, Badgujar SB (2010) Biological aspects of proteolytic enzymes: a review. J Pharm Res 3:2048–2068

    Google Scholar 

  77. Margesin R, Shinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14

    CAS  Google Scholar 

  78. Maria GL, Sridhar KR, Raviraja NS (2005) Antimicrobial and enzyme activity of mangrove endophytic fungi of southwest coast of India. J Agric Technol 1:67–80

    Google Scholar 

  79. Marlida Y, Delfita R, Gusmanizar N, Ciptaan G (2010) Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr 9:471–474

    CAS  Google Scholar 

  80. Marlida Y, Saari N, Hassan Z, Radu S (2000) Improvement in raw sago starch degrading enzyme production from Acremonium sp. endophytic fungus using carbon and nitrogen sources. Enzyme Microb Technol 27:511–515

    CAS  PubMed  Google Scholar 

  81. Marlida Y, Saari N, Hassan Z, Radu S (2000) Raw starch-degrading enzyme from newly isolated strains of endophytic fungi. World J Microbiol Biotechnol 16:573–578

    CAS  Google Scholar 

  82. Marlida Y, Saari N, Radu S, Bakar FA (2000) Production of an amylase-degrading raw starch by Gibberella pulicaris. Biotechnol Lett 22:95–97

    CAS  Google Scholar 

  83. Meijer M, Houbraken JAMP, Dalhuijsen S, Samson RA, Vries RP (2011) Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black aspergilla. Stud Mycol 69:19–30

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85

    CAS  PubMed  Google Scholar 

  85. Murthy NK, Pushpalatha KC, Joshi CG (2011) Antioxidant activity and phytochemical analysis of endophytic fungi isolated from Lobelia nicotianifolia. J Chem Pharm Res 3(5):218–225

    CAS  Google Scholar 

  86. Neirotti E, Azevedo JL (1988) Técnica semiquantitativa de avaliação da produção de celulases em Humicola sp. Rev Microbiol 19:78–81

    CAS  Google Scholar 

  87. Ng’ang’a MP, Kahangi EM, Onguso JM, Losenge T, Mwaura P (2011) Analyses of extra-cellular enzymes production by endophytic fungi isolated from bananas in Kenya. Afr J Hortic Sci 5:1–8

    Google Scholar 

  88. Nithya K, Muthumary J (2011) Bioactive metabolite produced by Phomopsis sp, an endophytic fungus in Allamanda cathartica linn. Recent Res Sci Technol 3:44–48

    Google Scholar 

  89. Oliveira ACD, Farion Watanabe FM, Vargas JVC, Rodrigues MLF, Mariano AB (2012) Production of methyl oleate with a lipase from an endophytic yeast isolated from castor leaves. Biocatal Agric Biotechnol 1:295–300

    CAS  Google Scholar 

  90. Oses R, Valenzuela S, Freer J, Baeza J, Rodríguez J (2006) Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation. Int Biodeterior Biodegrad 57:129–135

    CAS  Google Scholar 

  91. Osono T, Takeda H (1999) Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. Eur J Soil Biol 35(2):51–56

    Google Scholar 

  92. Osono T (2008) Endophytic and epiphytic phyllosphere fungi of Camellia japonica: seasonal and leaf age-dependent variations. Mycologia 100:387–391

    PubMed  Google Scholar 

  93. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    CAS  PubMed  Google Scholar 

  94. Panuthai T, Sihanonth P, Peapukiew J, Sooksai S, Sangvanich P, Karnchanatat A (2012) An extracellular lipase from the endophytic fungi Fusarium oxysporum isolated from the Thai medicinal plant, Croton oblongifolius Roxb. Afr J Microbiol Res 6:2622–2638

    CAS  Google Scholar 

  95. Peng Y, Yang X, Zhang Y (2005) Microbial fibrinolytic enzymes: an overview of source, production, properties, and thrombolytic activity in vivo. Appl Microbiol Biotechnol 69:126–132

    CAS  PubMed  Google Scholar 

  96. Peterson R, Grinyer J, Nevalainen H (2011) Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest. Mycol Prog 10:207–218

    Google Scholar 

  97. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    CAS  PubMed  Google Scholar 

  98. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73

    CAS  Google Scholar 

  99. Rajala T, Velmala SM, Tuomivirta T, Haapanen M, Müller M, Pennanen T (2013) Endophyte communities vary in the needles of Norway spruce clones. Fungal Biol 117:182–190

    PubMed  Google Scholar 

  100. Reddy PV, Lam CK, Belanger FC (1996) Mutualistic fungal endophytes express a proteinase that is homologous to proteases suspected to be important in fungal pathogenicity. Plant Physiol 111:1209–1218

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Rhoden SA, Garcia A, Rubin-Filho CJ, Azevedo JL, Pamphile JA (2012) Phylogenetic diversity of endophytic leaf fungus isolates from the medicinal tree Trichilia elegans (Meliaceae). Genet Mol Res 11:2513–2522

    CAS  PubMed  Google Scholar 

  102. Rhoden SA, Garcia A, Azevedo JL, Pamphile JA (2013) In silico analysis of diverse endophytic fungi by using ITS1-5, 8S-ITS2 sequences with isolates from various plant families in Brazil. Gen Mol Res 12:935–950

    CAS  Google Scholar 

  103. Riyaz-Ul-Hassan S, Strobel G, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23:29–35

    CAS  PubMed  Google Scholar 

  104. Robl D, Delabona P, Mergel CM, Rojas JD, Costa P, Pimentel IC, Vicente VA, Pradella JG, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. BMC Biotechnol 13:94. doi:10.1186/1472-6750-13-94

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Rosa LH, Vieira MLA, Cota BB, Johann S, Alves TMA, CL, Rosa CA (2011) Endophytic fungi of tropical forests: a promising source of bioactive prototype molecules for the treatment of neglected diseases. In: Rundfeldt C (ed) Drug development—a case study based insight into modern strategies. Intech, Rijeka, pp 469–486

  106. Roy J, Mukherjee AK (2013) Applications of a high maltose alkalophilic Bacillus licheniformes strain AS08E in food and laundry detergent industries. Biochem Eng J 77:220–230

    CAS  Google Scholar 

  107. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittrmiller PA, Nunez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger LA, Slack CB, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Sadrati N, Daoud H, Zerrog A, Dahamna S, Bouharati S (2013) Screening of antimicrobial and antioxidant secondary metabolites from endophytic fungi isolated from wheat (Triticum durum). J Plant Prot Res 53:128–136

    Google Scholar 

  109. Santamaria J, Bayman P (2005) Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb Ecol 50:1–8

    PubMed  Google Scholar 

  110. Sarath G, De La Motte RS, Wagner FW (1989) Protease assay methods. In: Beynon RJ, Bond JS (eds) Proteolytic enzymes: a practical approach. IRL Press, Oxford, pp 25–55

    Google Scholar 

  111. Sarrouh B, Santos TM, Miyoshi A, Dias R, Azevedo V (2012) Up-to-date insight on industrial enzymes applications and global market. J Bioprocess Biotechnol S4. doi:10.00210.4172/2155-9821.S4-002

  112. Schulz B, Boyle C, Draeger S, Römmert A, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004

    CAS  Google Scholar 

  113. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  114. Sieber TN (2002) Fungal root endophytes. In: Waisel Y, Eshel A, Kafkafi U (eds) The hidden half. Dekker, New York, pp 887–917

    Google Scholar 

  115. Singh RK, Tiwari MK, Singh R, Lee JK (2013) From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci 14:1232–1277

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Siqueira VM, Conti R, Araujo JM, Souza-Motta CM (2011) Endophytic fungi from the medicinal plant Lippia sidoides Cham. and their antimicrobial activity. Symbiosis 53:89–95

    CAS  Google Scholar 

  117. Stone JK, Polishook JD, White J (2004) Endophytic fungi. In: Mueller G, Bills GF, Foster M (eds) Biodiversity of fungi: inventory and monitoring method. Elsevier, Burlington, pp 241–270

    Google Scholar 

  118. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Sunitha VH, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43:1213–1221

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30

    Google Scholar 

  121. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Sasse F, Jansen R, Murali TS (2009) Fungal endophytes and bioprospecting. Fungal Biol Rev 23:9–19

    Google Scholar 

  122. Costa-Silva TA, Nogueira MA, Souza CRF, Oliveira WP, Said S (2011) Lipase production by endophytic fungus Cercospora kikuchii: stability of enzymatic activity after spray drying in the presence of carbohydrates. Dry Technol 29(9):1112–1119

    CAS  Google Scholar 

  123. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    CAS  PubMed  Google Scholar 

  124. Torres M, Dolcet MM, Sala N, Canela R (2003) Endophytic fungi associated with Mediterranean plants as a source of mycelium-bound lipases. J Agric Food Chem 51(11):3328–3333

    CAS  PubMed  Google Scholar 

  125. Torres MS, White JF, Zhang X, Hinton DM, Bacon CW (2012) Endophyte-mediated adjustments in host morphology and physiology and effects on host fitness traits in grasses. Fungal Ecol 5:322–330

    Google Scholar 

  126. Uenojo M, Pastore GM (2006) Isolamento e seleção de microrganismos pectinolíticos a partir de resíduos provenientes de agroindústrias para produção de aromas frutais. Food Sci Technol 26:509–515

    Google Scholar 

  127. Wang JW, Wu JH, Huang WY, Tan RX (2006) Laccase production by Monotospora sp, an endophytic fungus in Cynodon dactylon. Bioresour Technol 97:786–789

    CAS  PubMed  Google Scholar 

  128. Waqas M, Kahan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H, Lee I-J (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    CAS  PubMed  Google Scholar 

  129. Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A (2005) Physiology and biotechnology of Aspergillus. Adv Appl Microbiol 58:1–75

    Google Scholar 

  130. Wu B, Wu L, Chen D, Yang Z, Luo M (2009) Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. J Ind Microb Biotechnol 36:451–459

    Google Scholar 

  131. Zaferanloo B, Virkar A, Mahon P, Palombo E (2013) Endophytes from an Australian native plant are a promising source of industrially useful enzymes. World J Microbiol Biotechnol 29:335–345

    CAS  PubMed  Google Scholar 

  132. Zhang JY, Tao LY, Liang YJ, Chen LM, Mi YJ, Zheng LS (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8:1469–1481

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao T, Zhou D (2009) Aspergillus Niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidate in China. J Appl Microbiol 107:1202–1207

    CAS  PubMed  Google Scholar 

  134. Zhu D, Wang J, Zeng Q, Zhang Z, Yan R (2010) A novel endophytic Huperzine A-producing fungus, Shiraia sp. Slf14, isolated from Hiperzia serrata. J Appl Microbiol 109:1469–1478

    CAS  PubMed  Google Scholar 

  135. Zilly A, Bazanella GCS, Helm CV, Araújo CAV, Souza CGM, Bracht A, Peralta RM (2012) Solid-state bioconversion of passion fruit waste by white-rot fungi for production of oxidative and hydrolytic enzymes. Food Bioprocess Technol 5:1573–1580

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq, Proc. 563260/2010-6 and Proc. 477825/2012-5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). R.M.P., M.L.T.M.P. and A.B. are research fellows of CNPq. R.C.G.C. and T.R.M. are research fellows of CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Marina Peralta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, R.C.G., Rhoden, S.A., Mota, T.R. et al. Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41, 1467–1478 (2014). https://doi.org/10.1007/s10295-014-1496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1496-2

Keywords

Navigation