Skip to main content
Log in

Inactivation of the phosphoglucomutase gene pgm in Paenibacillus polymyxa leads to overproduction of fusaricidin

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Fusaricidin, a lipodepsipeptide isolated from Paenibacillus polymyxa, has high antimicrobial activity against fungi and Gram-positive bacteria. Through mutagenesis, we obtained two mutant strains, N1U7 and N17U7, which produce 6.2- to 7.9-fold more fusaricidin than their parent strain. Causal mutations were identified by whole-genome sequencing, and the two strains each contained at least eleven point mutations, including four common mutations. A mutation in the PPE04441 gene (pgm), encoding an α-phosphoglucomutase, was found to be an important factor in fusaricidin overproduction by complementation experiments. Null mutation of pgm in the parental strain increased fusaricidin production by 5.2-fold. Increased growth and cell viability in stationary phase, reduced exopolysaccharide production, and increased fusA expression were observed in the pgm mutant strains, which might be related to fusaricidin overproduction. This is the first report revealing that PGM deficiency leads to an overproduction of fusaricidin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arbeit RD, Maki D, Tally FP, Campanaro E, Eisenstein BI (2004) The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  CAS  PubMed  Google Scholar 

  2. Beatty PH, Jensen SE (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol 48:159–169

    Article  CAS  PubMed  Google Scholar 

  3. Bionda N, Cudic P (2011) Cyclic lipodepsipeptides in novel antimicrobial drug discovery. Croat Chem Acta 84:315–329

    Article  CAS  Google Scholar 

  4. Bionda N, Pitteloud JP, Cudic P (2013) Solid-phase synthesis of fusaricidin/li-f class of cyclic lipopeptides: guanidinylation of resin-bound peptidyl amines. Biopolymers 100:160–166

    Article  PubMed Central  PubMed  Google Scholar 

  5. Bizzini A, Majcherczyk P, Beggah-Moller S, Soldo B, Entenza JM, Gaillard M, Moreillon P, Lazarevic V (2007) Effects of alpha-phosphoglucomutase deficiency on cell wall properties and fitness in Streptococcus gordonii. Microbiology 153:490–498

    Article  CAS  PubMed  Google Scholar 

  6. Choi S-K, Park S-Y, Kim R, Kim S-B, Lee C-H, Kim JF, Park S-H (2009) Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J Bacteriol 191:3350–3358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Choi S-K, Park S-Y, Kim R, Lee C-H, Kim JF, Park S-H (2008) Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun 365:89–95

    Article  CAS  PubMed  Google Scholar 

  8. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Deng Y, Lu Z, Bi H, Lu F, Zhang C, Bie X (2011) Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 32:1917–1923

    Article  CAS  PubMed  Google Scholar 

  10. Farver DK, Hedge DD, Lee SC (2005) Ramoplanin: a lipoglycodepsipeptide antibiotic. Ann Pharmacother 39:863–868

    Article  CAS  PubMed  Google Scholar 

  11. Fulco P, Wenzel RP (2006) Ramoplanin: a topical lipoglycodepsipeptide antibacterial agent. Expert Rev Anti Infect Ther 4:939–945

    Article  CAS  PubMed  Google Scholar 

  12. Guerout-Fleury AM, Frandsen N, Stragier P (1996) Plasmids for ectopic integration in Bacillus subtilis. Gene 180:57–61

    Article  CAS  PubMed  Google Scholar 

  13. Haima P, van Sinderen D, Bron S, Venema G (1990) An improved beta-galactosidase alpha-complementation system for molecular cloning in Bacillus subtilis. Gene 93:41–47

    Article  CAS  PubMed  Google Scholar 

  14. Hardy GG, Caimano MJ, Yother J (2000) Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J Bacteriol 182:1854–1863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kajimura Y, Kaneda M (1996) Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot 49:129–135

    Article  CAS  PubMed  Google Scholar 

  16. Kajimura Y, Kaneda M (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot 50:220–228

    Article  CAS  Google Scholar 

  17. Kaneda M, Kajimura Y (2002) New antifungal antibiotics, bacillopeptins and fusaricidins. Yakugaku Zasshi 122:651–671

    Article  CAS  PubMed  Google Scholar 

  18. Kim JF, Jeong H, Park S-Y, Kim S-B, Park YK, Choi S-K, Ryu C-M, Hur C-G, Ghim S-Y, Oh TK, Kim JJ, Park CS, Park S-H (2010) Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681. J Bacteriol 192:6103–6104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kuroda J, Fukai T, Konishi M, Uno J, Kurusu K, Nomura T (2000) LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles 53:1533–1549

    Article  CAS  Google Scholar 

  20. Kuroda J, Fukai T, Nomura T (2001) Collision-induced dissociation of ring-opened cyclic depsipeptides with a guanidino group by electrospray ionization/ion trap mass spectrometry. J Mass Spectrom JMS 36:30–37

    Article  Google Scholar 

  21. Kurusu K, Ohba K, Arai T, Fukushima K (1987) New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J Antibiot 40:1506–1514

    Article  CAS  PubMed  Google Scholar 

  22. Lazarevic V, Soldo B, Medico N, Pooley H, Bron S, Karamata D (2005) Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71:39–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Lee SH, Cho YE, Park S-H, Balaraju K, Park JW, Lee SW, Park K (2013) An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49–58

    Article  CAS  Google Scholar 

  24. Levander F, Radstrom P (2001) Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose- and lactose-utilizing Streptococcus thermophilus. Appl Environ Microbiol 67:2734–2738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Li S, Zhang R, Wang Y, Zhang N, Shao J, Qiu M, Shen B, Yin X, Shen Q (2013) Promoter analysis and transcription regulation of fus gene cluster responsible for fusaricidin synthesis of Paenibacillus polymyxa SQR-21. Appl Microbiol Biotechnol 97:9479–9489

    Article  CAS  PubMed  Google Scholar 

  26. Neves AR, Pool WA, Castro R, Mingote A, Santos F, Kok J, Kuipers OP, Santos H (2006) The alpha-phosphoglucomutase of Lactococcus lactis is unrelated to the alpha-d-phosphohexomutase superfamily and is encoded by the essential gene pgmH. J Biol Chem 281:36864–36873

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen HD, Nguyen QA, Ferreira RC, Ferreira LC, Tran LT, Schumann W (2005) Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 54:241–248

    Article  CAS  PubMed  Google Scholar 

  28. Park S-Y, Park S-H, Choi S-K (2012) Characterization of sporulation histidine kinases of Paenibacillus polymyxa. Res Microbiol 163:272–278

    Article  CAS  PubMed  Google Scholar 

  29. Quinn GA, Maloy AP, McClean S, Carney B, Slater JW (2012) Lipopeptide biosurfactants from Paenibacillus polymyxa inhibit single and mixed species biofilms. Biofouling 28:1151–1166

    Article  CAS  PubMed  Google Scholar 

  30. Raza W, Wu H, Shen Q (2010) Use of response surface methodology to evaluate the effect of metal ions (Ca2+, Ni2+, Mn2+, Cu2+) on production of antifungal compounds by Paenibacillus polymyxa. Bioresour Technol 101:1904–1912

    Article  CAS  PubMed  Google Scholar 

  31. Raza W, Yang X, Wu H, Huang Q, Xu Y, Shen Q (2010) Evaluation of metal ions (Zn2+, Fe3+ and Mg2+) effect on the production of fusaricidin-type antifungal compounds by Paenibacillus polymyxa SQR-21. Bioresour Technol 101:9264–9271

    Article  CAS  PubMed  Google Scholar 

  32. Shoji J, Hinoo H, Sakazaki R, Kato T, Wakisaka Y, Mayama M, Matsuura S, Miwa H (1978) Isolation of tridecaptins A, B and C (studies on antibiotics from the genus Bacillus. XXIII). J Antibiot (Tokyo) 31:646–651

    Article  CAS  Google Scholar 

  33. Sieber SA, Marahiel MA (2003) Learning from nature’s drug factories: nonribosomal synthesis of macrocyclic peptides. J Bacteriol 185:7036–7043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Stawikowski M, Cudic P (2007) Depsipeptide synthesis. Methods Mol Biol 386:321–339

    CAS  PubMed  Google Scholar 

  35. Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 55:283–288

    Article  CAS  PubMed  Google Scholar 

  36. Torino MI, Mozzi F, Font de Valdez G (2005) Exopolysaccharide biosynthesis by Lactobacillus helveticus ATCC 15807. Appl Microbiol Biotechnol 68:259–265

    Article  CAS  PubMed  Google Scholar 

  37. Woodford N (2003) Novel agents for the treatment of resistant Gram-positive infections. Expert Opin Investig Drugs 12:117–137

    Article  CAS  PubMed  Google Scholar 

  38. Ye RW, Zielinski NA, Chakrabarty AM (1994) Purification and characterization of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J Bacteriol 176:4851–4857

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the New Industry R&D program funded by the Ministry of Trade, Industry, and Energy, and the KRIBB Research Initiative Program, Ministry of Science, ICT and Future Planning, Republic of Korea.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Hwan Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HR., Park, SY., Kim, SB. et al. Inactivation of the phosphoglucomutase gene pgm in Paenibacillus polymyxa leads to overproduction of fusaricidin. J Ind Microbiol Biotechnol 41, 1405–1414 (2014). https://doi.org/10.1007/s10295-014-1470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1470-z

Keywords

Navigation