Skip to main content

Advertisement

Log in

Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Styrene is an important commodity chemical used in polymers and resins, and is typically produced from the petrochemical feedstocks benzene and ethylene. Styrene has recently been produced biosynthetically for the first time using engineered Escherichia coli, and this bio-based route may represent a lower energy and renewable alternative to petroleum-derived styrene. However, the economics of such an approach has not yet been investigated. Using an early-stage technoeconomic evaluation tool, a preliminary economic analysis of bio-based styrene from C6-sugar feedstock has been conducted. Owing to styrene’s limited water solubility, it was assumed that the resulting fermentation broth would spontaneously form two immiscible liquid phases that could subsequently be decanted. Assuming current C6 sugar prices and industrially achievable biokinetic parameter values (e.g., product yield, specific growth rate), commercial-scale bio-based styrene has a minimum estimated selling price (MESP) of 1.90 USD kg−1 which is in the range of current styrene prices. A Monte Carlo analysis revealed a potentially large (0.45 USD kg−1) standard deviation in the MESP, while a sensitivity analysis showed feedstock price and overall yield as primary drivers of MESP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Báez-Viveros JL, Osuna J, Hernández-Chávez G, Soberón X, Bolívar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of l-phenylalanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87(4):516–524. doi:10.1002/bit.20159

    Article  PubMed  Google Scholar 

  2. Balboa B (2014) US styrene suppliers not looking to raise prices in March. ICIS. http://www.icis.com/resources/news/2014/03/07/9760770/us-styrene-suppliers-not-looking-to-raise-prices-in-March/. Accessed 3 May, 2014 2013

  3. BioAmber (2012) BioAmber. Accessed February, 2013

  4. Brennan TCR, Turner CD, Krömer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng. doi:10.1002/bit.24536

    PubMed  Google Scholar 

  5. Brown TR, Zhang Y, Hu G, Brown RC (2012) Techno-economic analysis of bio based chemicals production via integrated catalytic processing. Biofuels Bioprod Biorefining 6(1):73–87. doi:10.1002/bbb.344

    Article  CAS  Google Scholar 

  6. Bunger M (2012) Breaking the model: why most assessments of bio based materials and chemicals costs are wrong. Ind Biotechnol 8(5):272–274

    Article  Google Scholar 

  7. Chen S–S (2000) Styrene. In: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc., New York. doi:10.1002/0471238961.1920251803080514.a01.pub2

  8. Claypool JT, Raman DR (2013) Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes. Bioresour Technol 150(0):486–495

    Article  CAS  PubMed  Google Scholar 

  9. Department of Agriculture I (2011) Iowa agriculture quick facts 2011. http://www.iowaagriculture.gov/quickfacts.asp. Accessed 8 Feb, 2013

  10. Haldi J, Whitcomb D (1967) Economies of scale in industrial plants. J Polit Econ 75(4):373–385

    Article  Google Scholar 

  11. Hannon JR (2007) Comparing the scale-up of aerobic and anaerobic biological processes. In: The 2007 annual meeting

  12. Hermann BG, Patel M (2007) Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology—a techno-economic analysis. Appl Biochem Biotech 136(3):361–388

    Article  CAS  Google Scholar 

  13. Jarboe LR, Liu P, Royce LA (2011) Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 1(1):38–42. doi:10.1016/j.coche.2011.08.003

    Article  CAS  Google Scholar 

  14. Juminaga D, Baidoo EEK, Redding-Johanson AM, Batth TS, Burd H, Mukhopadhyay A, Petzold CJ, Keasling JD (2012) Modular engineering of l-tyrosine production in Escherichia coli. Appl Environ Microb 78(1):89–98. doi:10.1128/aem.06017-11

    Article  CAS  Google Scholar 

  15. Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89:S20–S28. doi:10.1016/j.fuel.2010.01.001

    Article  CAS  Google Scholar 

  16. Kazi FK, Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP (2011) Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem Eng J 169(1–3):329–338. doi:10.1016/j.cej.2011.03.018

    Article  CAS  Google Scholar 

  17. Levenspiel O (1980) The monod equation—a revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22(8):1671–1687

    Article  CAS  Google Scholar 

  18. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity Engineering. Biotechnol Progr 15(5):777–793. doi:10.1021/bp990109e

    Article  CAS  Google Scholar 

  19. Marchetti JM, Miguel VU, Errazu AF (2008) Techno-economic study of different alternatives for biodiesel production. Fuel Process Technol 89(8): 740–748. doi:http://dx.doi.org/10.1016/j.fuproc.2008.01.007

  20. McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13(5):544–554. doi:10.1016/j.ymben.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  21. National Renewable Energy L, United States. Dept. of E, United States. Dept. of Energy. Office of S, Technical I (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. United States. Dept. of Energy; distributed by the Office of Scientific and Technical Information, US Dept. of Energy. Available via http://worldcat.org. http://www.osti.gov/servlets/purl/766198-WblxIL/native/

  22. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biot 55(3):263–283

    Article  CAS  Google Scholar 

  23. Nikolau BJ, Perera MADN, Brachova L, Shanks B (2008) Platform biochemicals for a biorenewable chemical industry. Plant J 54(4):536–545. doi:10.1111/j.1365-313X.2008.03484.x

    Article  CAS  PubMed  Google Scholar 

  24. Peters MS, Timmerhaus KD, West RE (2003) Plant design and economics for chemical engineers. McGraw-Hill, New York

    Google Scholar 

  25. Rezaei F, Joh L, Kashima H, Reddy A, VanderGheynst J (2011) Selection of conditions for cellulase and xylanase extraction from switchgrass colonized by Acidothermus cellulolyticus. Appl Biochem Biotech 164(6):793–803. doi:10.1007/s12010-011-9174-6

    Article  CAS  Google Scholar 

  26. Rogner H-H (2012) Energy Resources. In: Toth FL (ed) Energy for development, environment and policy, vol 54. Springer, Netherlands, pp 149–160. doi:10.1007/978-94-007-4162-1_12

    Google Scholar 

  27. Total (2001) Carville styrenics complex fact sheet. http://www.totalpetrochemicalsusa.com/

  28. Turton R, Bailie RC, Whiting WB (2010) Analysis, synthesis and design of chemical processes. MyiLibrary. Available via http://worldcat.org

  29. Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas. Other information: PBD: 1 Aug

  30. Woods DR (2007) Rules of thumb in engineering practice. Wiley-VCH; John Wiley, Chichester

  31. Xie DM, Shao ZY, Achkar JH, Zha WJ, Frost JW, Zhao HM (2006) Microbial synthesis of triacetic acid lactone. Biotechnol Bioeng 93(4):727–736

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Kurt Rosentrater, Assistant Professor in Agricultural and Biosystems Engineering, for help regarding the incorporation of a Monte Carlo Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua T. Claypool.

Additional information

The material presented here is based upon work supported by the National Science Foundation under Award No. EEC-0813570. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claypool, J.T., Raman, D.R., Jarboe, L.R. et al. Technoeconomic evaluation of bio-based styrene production by engineered Escherichia coli . J Ind Microbiol Biotechnol 41, 1211–1216 (2014). https://doi.org/10.1007/s10295-014-1469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1469-5

Keywords

Navigation