Skip to main content
Log in

A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe2+ ions, but was inhibited strongly by Fe3+. The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe2+ treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe3+ was first time demonstrated to associate tryptophan fluorescence quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270

    Article  CAS  Google Scholar 

  2. Beg Q, Kapoor M, Mahajan L, Hoondal G (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3):326–338

    Article  CAS  PubMed  Google Scholar 

  3. Belancic A, Scarpa J, Peirano A, Diaz R, Steiner J, Eyzaguirre J (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol 41(1):71–79

    Article  CAS  PubMed  Google Scholar 

  4. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3(11):286–290

    Article  CAS  Google Scholar 

  5. Cai H, Shi P, Bai Y, Huang H, Yuan T, Yang P, Luo H, Meng K, Yao B (2011) A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochem 46(12):2341–2346

    Article  CAS  Google Scholar 

  6. Chand P, Aruna A, Maqsood A, Rao L (2005) Novel mutation method for increased cellulase production. J Appl Microbiol 98(2):318–323

    Article  CAS  PubMed  Google Scholar 

  7. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23

    Article  CAS  PubMed  Google Scholar 

  8. Dobrev G, Zhekova B, Delcheva G, Koleva L, Tziporkov N, Pishtiyski I (2009) Purification and characterization of endoxylanase Xln-1 from Aspergillus niger B03. World J Microbiol Biotechnol 25(12):2095–2102

    Article  CAS  Google Scholar 

  9. Dong X, Meinhardt SW, Schwarz PB (2012) Isolation and characterization of two endoxylanases from Fusarium graminearum. J Agric Food Chem 60(10):2538–2545. doi:10.1021/jf203407p

    Article  CAS  PubMed  Google Scholar 

  10. Driss D, Bhiri F, Elleuch L, Bouly N, Stals I, Miled N, Blibech M, Ghorbel R, Chaabouni SE (2011) Purification and properties of an extracellular acidophilic endo-1,4-β-xylanase, naturally deleted in the “thumb”, from Penicillium occitanis Pol6. Process Biochem 46(6):1299–1306. doi:10.1016/j.procbio.2011.02.022

    Article  CAS  Google Scholar 

  11. Eftink (2006) Fluorescence techniques for studying protein structure. In: Suelter CH (ed) Methods of biochemical analysis: protein structure determination, vol 35. John Wiley & Sons, Inc, Hoboken. doi:10.1002/9780470110560.ch3

    Google Scholar 

  12. Engelborghs Y (2003) Correlating protein structure and protein fluorescence. J Fluoresc 13(1):9–16

    Article  CAS  Google Scholar 

  13. Guo B, Chen X-L, Sun C-Y, Zhou B-C, Zhang Y-Z (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1, 4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84(6):1107–1115

    Article  CAS  PubMed  Google Scholar 

  14. Gusakov A (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425

    Article  CAS  PubMed  Google Scholar 

  15. Jiang Z, Cong Q, Yan Q, Kumar N, Du X (2010) Characterisation of a thermostable xylanase from Chaetomium sp. and its application in Chinese steamed bread. Food Chem 120(2):457–462

    Article  CAS  Google Scholar 

  16. Juturu V, Wu JC (2011) Microbial xylanases: engineering, production and industrial applications. Biotechnol Adv 30(6):1219–1227

    Article  PubMed  Google Scholar 

  17. Khandeparkar RDS, Bhosle NB (2006) Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation. Enzyme Microb Technol. doi:10.1016/j.enzmictec.2005.12.008

    Google Scholar 

  18. Kimura T, Ito J, Kawano A, Makino T, Kondo H, Karita S, Sakka K, Ohmiya K (2000) Purification, characterization, and molecular cloning of acidophilic xylanase from Penicillium sp. 40. Biosci Biotech Bioch 64(6):1230–1237

    Article  CAS  Google Scholar 

  19. Kumar AR, Hegde SS, Ganesh KN, Khan MI (2003) Structural changes enhance the activity of Chainia xylanase in low urea concentrations. Biochim Biophys Acta Proteins Proteomics 1645(2):164–171. doi:10.1016/s1570-9639(02)00530-7

    Article  CAS  Google Scholar 

  20. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100(18):4203–4213

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  22. Li D, Zhu M, Xu C, Ji B (2011) Characterization of the baicalein-bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches. Eur J Med Chem 46(2):588–599

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Tian H, Cheng Y, Jiang Z, Yang S (2006) Purification and characterization of a thermostable cellulase-free xylanase from the newly isolated Paecilomyces thermophila. Enzyme Microb Technol 38(6):780–787

    Article  CAS  Google Scholar 

  24. Liao H, Xu C, Tan S, Wei Z, Ling N, Yu G, Raza W, Zhang R, Shen Q, Xu Y (2012) Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2. Bioresour Technol 123(2):117–124

    Article  CAS  PubMed  Google Scholar 

  25. Liu G, Zhang L, Wei X, Zou G, Qin Y, Ma L, Li J, Zheng H, Wang S, Wang C (2013) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS ONE 8(2):e55185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lu Y, Feng Q, Cui F, Xing W, Zhang G, Yao X (2010) Interaction of 3′-azido-3′-deamino daunorubicin with human serum albumin: investigation by fluorescence spectroscopy and molecular modeling methods. Bioorg Med Chem Lett 20(23):6899–6904

    Article  CAS  PubMed  Google Scholar 

  27. Luo H, Li J, Yang J, Wang H, Yang Y, Huang H, Shi P, Yuan T, Fan Y, Yao B (2009) A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 13(5):849–857. doi:10.1007/s00792-009-0272-0

    Article  CAS  PubMed  Google Scholar 

  28. Luo H, Wang Y, Li J, Wang H, Yang J, Yang Y, Huang H, Fan Y, Yao B (2009) Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb Technol 45(2):126–133

    Article  CAS  Google Scholar 

  29. Luo H, Yang J, Li J, Shi P, Huang H, Bai Y, Fan Y, Yao B (2010) Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl Microbiol Biotechnol 86(6):1829–1839

    Article  CAS  PubMed  Google Scholar 

  30. Möller E, Bahnweg G, Sandermann H, Geiger H (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20(22):6115

    Article  PubMed Central  PubMed  Google Scholar 

  31. Marjamaa K, Toth K, Bromann PA, Szakacs G, Kruus K (2013) Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme Microb Technol 52(6–7):358–369

    Article  CAS  PubMed  Google Scholar 

  32. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428

    Article  CAS  Google Scholar 

  33. Nath D, Rao M (1998) Structural and functional role of tryptophan in xylanase from an extremophilic Bacillus: assessment of the active site. Biochem Biophys Res Commun 249(1):207–212

    Article  CAS  PubMed  Google Scholar 

  34. Pokhrel S, Yoo YJ (2009) Designing active site pK(a) values to shift optimum pH of Bacillus circulans xylanase. New Biotechnol 25:126

    Article  Google Scholar 

  35. Rajagopalan G, Yew KW, He J, Yang KL (2013) Production, purification, and characterization of a xylooligosaccharides-forming xylanase from high-butanol-producing strain Clostridium sp, BOH3. Bioenerg Res 6(2):1–10

    Article  Google Scholar 

  36. Ravalason H, Gwénaël J, Daniel M, Maryvonne P, Coutinho PM (2008) Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80(4):719–733. doi:10.1007/s00253-008-1596-x

    Article  CAS  PubMed  Google Scholar 

  37. Ryan SE, Nolan K, Thompson RN, Gubitz GM, Savage AV, Tuohy MG (2003) Purification and characterization of a new low molecular weight endoxylanase from Penicillium capsulatum. Enzyme Microb Technol 33(6):775–785. doi:10.1016/s0141-0229(03)00176-5

    Article  CAS  Google Scholar 

  38. Torronen A, Rouvinen J (1995) Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochem 34(3):847–856

    Article  CAS  Google Scholar 

  39. Ujiie M, Roy C, Yaguchi M (1991) Low-molecular-weight xylanase from Trichoderma viride. Appl Environ Microbiol 57(6):1860–1862

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Vieira COA, Filho EXF (2003) Purification and characterization of a novel cellulase-free xylanase from Acrophialophora nainiana. FEMS Microbiol Lett 223(2):309–314

    Article  Google Scholar 

  41. Von Gal Milanezi N, Mendoza DPG, de Siqueira FG, Silva LP, Ricart CAO, Filho EXF (2012) Isolation and characterization of a xylan-degrading enzyme from Aspergillus niger van tieghem LPM 93 with potential for industrial applications. Bioenerg Res 5(2):363–371

    Article  Google Scholar 

  42. Wang S, He J, Cui Z, Li S (2007) Self-formed adaptor PCR: a simple and efficient method for chromosome walking. Appl Environ Microbiol 73(15):5048–5051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Wong K, Tan L, Saddler JN (1988) Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol Mol Biol Rev 52(3):305–317

    CAS  Google Scholar 

  44. Ximenes FA, de Sousa MV, Puls J, da Silva Jr FG, Filho EXF (1999) Purification and characterization of a low-molecular-weight xylanase produced by Acrophialophora nainiana. Curr Microbiol 38(1):18–21

    Article  CAS  PubMed  Google Scholar 

  45. Zhang F, Shi P, Bai Y, Luo H, Yuan T, Huang H, Yang P, Miao L, Yao B (2011) An acid and highly thermostable xylanase from Phialophora sp. G5. Appl Microbiol Biotechnol 89(6):1851–1858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Agricultural Ministry of China (2011-G27), Special Fund for Agro-scientific Research in the Public Interest (201203001), National key technology R&D program (L020130249), and National Undergraduate Innovative Experiment Program (201310307020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangchun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, H., Sun, S., Wang, P. et al. A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity. J Ind Microbiol Biotechnol 41, 1071–1083 (2014). https://doi.org/10.1007/s10295-014-1453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1453-0

Keywords

Navigation