Skip to main content
Log in

The effect of albumin fusion structure on the production and bioactivity of the somatostatin-28 fusion protein in Pichia pastoris

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)2-HSA, (SS28)3-HSA, and HSA-(SS28)2, were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)3-HSA was much lower than (SS28)2-HSA and HSA-(SS28)2 due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)2-HSA being the most effective one. A pharmacokinetics study showed that (SS28)2-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ben-Shlomo A, Melmed S (2003) Clinical review 154: the role of pharmacotherapy in perioperative management of patients with acromegaly. J Clin Endocrinol Metab 88:963–968

    Article  CAS  PubMed  Google Scholar 

  2. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    Article  CAS  PubMed  Google Scholar 

  3. Chang SH, Gong X, Yang ZY, Wang TY, Ma GC, Ma QJ, Wu J (2006) Expression in Pichia pastoris and properties of human serum albumin-interferon alpha2b chimera. Sheng Wu Gong Cheng Xue Bao 22:173–179

    Article  CAS  PubMed  Google Scholar 

  4. Dou WF, Lei JY, Zhang LF, Xu ZH, Chen Y, Jin J (2008) Expression, purification, and characterization of recombinant human serum albumin fusion protein with two human glucagon-like peptide-1 mutants in Pichia pastoris. Protein Expr Purif 61:45–49

    Article  CAS  PubMed  Google Scholar 

  5. Gao Z, Bai G, Chen J, Zhang Q, Pan P, Bai F, Geng P (2009) Development, characterization, and evaluation of a fusion protein of a novel glucagon-like peptide-1 (GLP-1) analog and human serum albumin in Pichia pastoris. Biosci Biotechnol Biochem 73:688–694

    Article  CAS  PubMed  Google Scholar 

  6. Gao Z, Li Z, Zhang Y, Huang H, Li M, Zhou L, Tang Y, Yao B, Zhang W (2012) High-level expression of the Penicillium notatum glucose oxidase gene in Pichia pastoris using codon optimization. Biotechnol Lett 34(3):507–514. doi:10.1007/s10529-011-0790-6

    Article  CAS  PubMed  Google Scholar 

  7. Halpern W, Riccobene TA, Agostini H, Baker K, Stolow D, Gu ML, Hirsch J, Mahoney A, Carrell J, Boyd E, Grzegorzewski KJ (2002) Albugranin, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys. Pharm Res 19:1720–1729

    Article  CAS  PubMed  Google Scholar 

  8. Jacobs S, Schulz S (2008) Intracellular trafficking of somatostatin receptors. Mol Cell Endocrinol 286:58–62

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi K (2006) Summary of recombinant human serum albumin development. Biologicals 34:55–59

    Article  CAS  PubMed  Google Scholar 

  10. Lei J, Guan B, Li B, Duan Z, Chen Y, Li H, Jin J (2012) Expression, purification and characterization of recombinant human interleukin-2-serum albumin (rhIL-2-HSA) fusion protein in Pichia pastoris. Protein Expr Purif 84(1):154–160. doi:10.1016/j.pep.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  11. Lesche S, Lehmann D, Nagel F, Schmid HA, Schulz S (2009) Differential effects of octreotide and pasireotide on somatostatin receptor internalization and trafficking in vitro. J Clin Endocrinol Metab 94:654–661

    Article  CAS  PubMed  Google Scholar 

  12. Lewis I, Bauer W, Albert R, Chandramouli N, Pless J, Weckbecker G, Bruns C (2003) A novel somatostatin mimic with broad somatotropin release inhibitory factor receptor binding and superior therapeutic potential. J Med Chem 46:2334–2344

    Article  CAS  PubMed  Google Scholar 

  13. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  PubMed  Google Scholar 

  14. Olias G, Viollet C, Kusserow H, Epelbaum J, Meyerhof W (2004) Regulation and function of somatostatin receptors. J Neurochem 89:1057–1091

    Article  CAS  PubMed  Google Scholar 

  15. Osborn BL, Olsen HS, Nardelli B, Murray JH, Zhou JX, Garcia A, Moody G, Zaritskaya LS, Sung C (2002) Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther 303:540–548

    Article  CAS  PubMed  Google Scholar 

  16. Osborn BL, Sekut L, Corcoran M, Poortman C, Sturm B, Chen G, Mather D, Lin HL, Parry TJ (2002) Albutropin: a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys. Eur J Pharmacol 456:149–158

    Article  CAS  PubMed  Google Scholar 

  17. Pasquali D, Rossi V, Conzo G, Pannone G, Bufo P, De Bellis A, Renzullo A, Bellastella G, Colao A, Vallone G, Bellastella A, Sinisi AA (2008) Effects of somatostatin analog SOM230 on cell proliferation, apoptosis, and catecholamine levels in cultured pheochromocytoma cells. J Mol Endocrinol 40:263–271

    CAS  PubMed  Google Scholar 

  18. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20:157–198

    Article  CAS  PubMed  Google Scholar 

  19. Patel YC, Wheatley T (1983) In vivo and in vitro plasma disappearance and metabolism of somatostatin-28 and somatostatin-14 in the rat. Endocrinology 112:220–225

    Article  CAS  PubMed  Google Scholar 

  20. Pradayrol L, Jornvall H, Mutt V, Ribet A (1980) N-terminally extended somatostatin: the primary structure of somatostatin-28. FEBS Lett 109:55–58

    Article  CAS  PubMed  Google Scholar 

  21. Pyronnet S, Bousquet C, Najib S, Azar R, Laklai H, Susini C (2008) Antitumor effects of somatostatin. Mol Cell Endocrinol 286:230–237

    Article  CAS  PubMed  Google Scholar 

  22. Reubi JC (1997) Regulatory peptide receptors as molecular targets for cancer diagnosis and therapy. Q J Nucl Med 41:63–70

    CAS  PubMed  Google Scholar 

  23. Schmid HA (2008) Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol 286:69–74

    Article  CAS  PubMed  Google Scholar 

  24. Schulz S, Handel M, Schreff M, Schmidt H, Hollt V (2000) Localization of five somatostatin receptors in the rat central nervous system using subtype-specific antibodies. J Physiol Paris 94:259–264

    Article  CAS  PubMed  Google Scholar 

  25. Thermos K, He HT, Wang HL, Margolis N, Reisine T (1989) Biochemical properties of brain somatostatin receptors. Neuroscience 31:131–141

    Article  CAS  PubMed  Google Scholar 

  26. Thermos K, Reisine T (1988) Somatostatin receptor subtypes in the clonal anterior pituitary cell lines AtT-20 and GH3. Mol Pharmacol 33:370–377

    CAS  PubMed  Google Scholar 

  27. van der Hoek J, van der Lelij AJ, Feelders RA, de Herder WW, Uitterlinden P, Poon KW, Boerlin V, Lewis I, Krahnke T, Hofland LJ, Lamberts SW (2005) The somatostatin analogue SOM230, compared with octreotide, induces differential effects in several metabolic pathways in acromegalic patients. Clin Endocrinol (Oxf) 63:176–184

    Article  Google Scholar 

  28. Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2:999–1017

    Article  CAS  PubMed  Google Scholar 

  29. Zhan J, Chen Y, Yuan HY, Li H, Lu H (2012) Fusion of HSA influences TNF-alpha neutralizing activity of shTNFRs. Biotechnol Lett 34(3):417–423. doi:10.1007/s10529-011-0793-3

    Article  CAS  PubMed  Google Scholar 

  30. Zhao HL, Xue C, Wang Y, Li XY, Xiong XH, Yao XQ, Liu ZM (2007) Circumventing the heterogeneity and instability of human serum albumin-interferon-alpha2b fusion protein by altering its orientation. J Biotechnol 131:245–252

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jian Jin and his colleagues for their technical assistance in fermentation and purification processes. The work was financially supported by the Natural Science Foundation of Jiangsu Province (BK2012104 and BK2011165) and the Public Service Platform for Science and Technology Infrastructure Construction Project of Jiangsu Province (BM2012066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuedi Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Fan, J., Li, W. et al. The effect of albumin fusion structure on the production and bioactivity of the somatostatin-28 fusion protein in Pichia pastoris . J Ind Microbiol Biotechnol 41, 997–1006 (2014). https://doi.org/10.1007/s10295-014-1440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1440-5

Keywords

Navigation