Skip to main content
Log in

Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Heterotrophic denitrifying enriched culture (DEC) from a lab-scale high-rate denitrifying reactor was discovered to perform nitrate-dependent anaerobic ferrous oxidation (NAFO). The DEC was systematically investigated to reveal their denitrification activity, their NAFO activity, and the predominant microbial population. The DEC was capable of heterotrophic denitrification with methanol as the electron donor, and autotrophic denitrification with ferrous salt as the electron donor named NAFO. The conversion ratios of ferrous-Fe and nitrate-N were 87.41 and 98.74 %, and the consumption Fe/N ratio was 2.3:1 (mol/mol). The maximum reaction velocity and half saturation constant of Fe were 412.54 mg/(l h) and 8,276.44 mg/l, and the counterparts of N were 20.87 mg/(l h) and 322.58 mg/l, respectively. The predominant bacteria were Hyphomicrobium, Thauera, and Flavobacterium, and the predominant archaea were Methanomethylovorans, Methanohalophilus, and Methanolobus. The discovery of NAFO by heterotrophic DEC is significant for the development of wastewater treatment and the biogeochemical iron cycle and nitrogen cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. An S, Stone H, Nemati M (2011) Biological removal of nitrate by an oil reservoir culture capable of autotrophic and heterotrophic activities: kinetic evaluation and modeling of heterotrophic process. J Hazard Mater 190(1):686–693

    Article  PubMed  CAS  Google Scholar 

  2. Association APH, Federation WPC, Federation WE (1915) Standard methods for the examination of water and wastewater, vol. 2. American Public Health Association, Washington, D.C.

    Google Scholar 

  3. Bae H-S, Im W-T, Suwa Y, Lee JM, Lee S-T, Chang Y-K (2009) Characterization of diverse heterocyclic amine-degrading denitrifying bacteria from various environments. Arch Microbiol 191(4):329–340

    Article  PubMed  CAS  Google Scholar 

  4. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46(1):128–148

    Article  Google Scholar 

  5. Blöthe M, Roden EE (2009) Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl Environ Microbiol 75(21):6937–6940

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chakraborty A, Picardal F (2013) Induction of nitrate-dependent Fe(II) oxidation by Fe(II) in Dechloromonas sp. strain UWNR4 and Acidovorax sp. strain 2AN. Appl Environ Microbiol 79(2):748–752

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Chakraborty A, Roden EE, Schieber J, Picardal F (2011) Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Appl Environ Microbiol 77(24):8548–8556

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Chavarie C, Karamanev D, Godard F, Garnier A, Andre G (1993) Comparison of the kinetics of ferrous iron oxidation by three different strains of Thiobacillus ferrooxidans. Geomicrobiol J 11(1):57–63

    Article  CAS  Google Scholar 

  9. Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78(12):4386–4399

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Feinberg LF, Srikanth R, Vachet RW, Holden JF (2008) Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl Environ Microbiol 74(2):396–402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Fesefeldt A, Kloos K, Bothe H, Lemmer H, Gliesche C (1998) Distribution of denitrification and nitrogen fixation genes in Hyphomicrobium spp. and other budding bacteria. Can J Microbiol 44(2):181–186

    Article  CAS  Google Scholar 

  12. Fredricks DN, Schubert MM, Myerson D (2005) Molecular identification of an invasive gingival bacterial community. Clin Infect Dis 41(1):e1–e4

    Article  PubMed  Google Scholar 

  13. Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166(5):308–314

    Article  PubMed  CAS  Google Scholar 

  14. Hedrich S, Schlomann M, Johnson DB (2011) The iron-oxidizing Proteobacteria. Microbiology 157(Pt 6):1551–1564. doi:10.1099/mic.0.045344-0

    Article  PubMed  CAS  Google Scholar 

  15. Horn MA, Ihssen J, Matthies C, Schramm A, Acker G, Drake HL (2005) Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 55(3):1255–1265

    Article  PubMed  CAS  Google Scholar 

  16. Isaka K, Kimura Y, Osaka T, Tsuneda S (2012) High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria. Water Res 46(16):4941–4948

    Article  PubMed  CAS  Google Scholar 

  17. Jiang B, Parshina S, Van Doesburg W, Lomans B, Stams A (2005) Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55(6):2465–2470

    Article  PubMed  CAS  Google Scholar 

  18. Karpuzcu ME, Stringfellow WT (2012) Kinetics of nitrate removal in wetlands receiving agricultural drainage. Ecol Eng 42:295–303

    Article  Google Scholar 

  19. Keller M, Braun F-J, Dirmeier R, Hafenbradl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164(6):390–395

    Article  PubMed  CAS  Google Scholar 

  20. Kim B-Y, Weon H-Y, Cousin S, Yoo S-H, Kwon S-W, Go S-J, Stackebrandt E (2006) Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 56(7):1645–1649

    Article  PubMed  CAS  Google Scholar 

  21. Li W, Zheng P, Wang L, Zhang M, Lu H, Xing Y, Zhang J, Wang R, Song J, Ghulam A (2013) Physical characteristics and formation mechanism of denitrifying granular sludge in high-load reactor. Bioresource Technol 142:683–687

    Article  CAS  Google Scholar 

  22. Lins P, Schwarzenauer T, Reitschuler C, Wagner AO, Illmer P (2012) Methanogenic potential of formate in thermophilic anaerobic digestion. Waste Manag Res 30(10):1031–1040

    Article  PubMed  Google Scholar 

  23. McCarty PL, Smith DP (1986) Anaerobic wastewater treatment. Environ Sci Technol 20(12):1200–1206

    Article  CAS  Google Scholar 

  24. Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3(1):371–394

    Article  CAS  Google Scholar 

  25. Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  PubMed  CAS  Google Scholar 

  26. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  PubMed  CAS  Google Scholar 

  27. O’Reilly J, Lee C, Collins G, Chinalia F, Mahony T, O’Flaherty V (2009) Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilms. Water Res 43(14):3365–3374

    Article  PubMed  Google Scholar 

  28. Özkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka JA (2007) Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one. Biotechnol Bioeng 97(5):1121–1127

    Article  PubMed  Google Scholar 

  29. Pandey R, Malhotra S, Rajvaidya A, Sharma S, Peshwe S, Raman V, Bal A (2004) Chemo-biochemical desulphurization of various gaseous streams on bench scale. Water Air Soil Pollut 154(1–4):295–311

    Article  CAS  Google Scholar 

  30. Paterek JR, Smith PH (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen†. Int J Syst Bacteriol 38(1):122–123

    Article  Google Scholar 

  31. Shen Z, Zhou Y, Wang J (2013) Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresource Technol 131:33–39

    Article  CAS  Google Scholar 

  32. Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62(4):1458–1460

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59(9):2918–2926

    PubMed Central  PubMed  Google Scholar 

  34. Weber KA, Pollock J, Cole KA, O’Connor SM, Achenbach LA, Coates JD (2006) Anaerobic nitrate-dependent iron (II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Appl Environ Microbiol 72(1):686–694

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-i, Parte A (2012) Bergey’s manual® of systematic bacteriology, vol. 5. Springer, Berlin Heidelberg New York

    Google Scholar 

  36. Wu S-Y, Lai M-C (2011) Methanogenic archaea isolated from Taiwan’s Chelungpu fault. Appl Environ Microbiol 77(3):830–838

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work by the National Natural Science Foundation of China (51278457) and Zhejiang Provincial National Science Foundation (Z5110094) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Zheng, P., Xing, YJ. et al. Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture. J Ind Microbiol Biotechnol 41, 803–809 (2014). https://doi.org/10.1007/s10295-014-1424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-014-1424-5

Keywords

Navigation