Skip to main content
Log in

Enhancement of ansamitocin P-3 production in Actinosynnema pretiosum by a synergistic effect of glycerol and glucose

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Ansamitocin P-3 (AP-3), a secondary metabolite produced by Actinosynnema pretiosum, is well known for its extraordinary antitumor properties and is broadly utilized in clinical research. Through this work, we found, for the first time, that the combination of glucose and glycerol as a mixed carbon source is an appropriate approach for enhancing the production of AP-3 by A. pretiosum. The amount yielded was about threefold that obtained with glucose as the sole carbon source. In order to better understand the mechanisms that channel glycerol metabolism towards AP-3 production, the activities of some key enzymes such as glucose-6-phosphate dehydrogenase, glucose-6-phosphate isomerase, phosphoglucomutase (PGM), and fructose 1,6-bisphosphatase were assessed. The results showed that glycerol affects the production of AP-3 by increasing PGM activity. Furthermore, qRT-PCR analysis revealed that transcriptional levels of structural genes asm14 and asm24, and primary genes amir5189 and amir6327 were up-regulated in medium containing glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bhattacharyya BK, Pal SC, Sen SK (1998) Antibiotic production by Streptomyces hygroscopicus D 1.5: cultural effect. Rev Microbiol. doi:10.1590/S0001-37141998000300003

  2. Borodina I, Scholler C, Eliasson A, Nielsen J (2005) Metabolic network analysis of Streptomyces tenebrarius, a Streptomyces species with an active Entner–Doudoroff pathway. Appl Environ Microbiol 71(5):2294–2302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Carroll BJ, Moss SJ, Bai L, Kato Y, Toelzer S, Yu TW, Floss HG (2002) Identification of a set of genes involved in the formation of the substrate for the incorporation of the unusual “glycolate” chain extension unit in ansamitocin biosynthesis. J Am Chem Soc 124(16):4176–4177

    Article  CAS  PubMed  Google Scholar 

  4. Cassady JM, Chan KK, Floss HG, Leistner E (2004) Recent developments in the maytansinoid antitumor agents. Chem Pharm Bull (Tokyo) 52(1):1–26

    Article  CAS  Google Scholar 

  5. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27(1):30–39

    Article  PubMed  Google Scholar 

  6. Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94(5):821–829

    Article  CAS  PubMed  Google Scholar 

  7. Drew SW, Demain AL (1977) Effect of primary metabolites on secondary metabolism. Annu Rev Microbiol 31:343–356

    Article  CAS  PubMed  Google Scholar 

  8. Gallo M, Katz E (1972) Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazinone synthase and actinomycin formation by glucose. J Bacteriol 109(2):659–667

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Gancedo JM, Gancedo C (1971) Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Archiv Mikrobiol 76(2):132–138

    Article  CAS  Google Scholar 

  10. Hatano K, Akiyama S, Asai M, Rickards RW (1982) Biosynthetic origin of aminobenzenoid nucleus (C7N-unit) of ansamitocin, a group of novel maytansinoid antibiotics. J Antibiot (Tokyo) 35(10):1415–1417

    Article  CAS  Google Scholar 

  11. Hu R, Chen C, Zhang Q, Yingbin L (2009) Influence of glycerol on spiramycin biosynthesis process. J East China Univ Sci Technol (Nature Science Edition) 35:30–34

    CAS  Google Scholar 

  12. Chen K, Lin Y-H, Tsai C-M, Hsieh C-H, Houng J-Y (2002) Optimization of glycerol feeding for clavulanic acid production by Streptomyces clavuligerus with glycerol feeding. Biotechnol Lett 24:455–458

    Article  CAS  Google Scholar 

  13. Lamed R, Zeikus JG (1980) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141(3):1251–1257

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Lin J, Bai L, Deng Z, Zhong JJ (2010) Effect of ammonium in medium on ansamitocin P-3 production by Actinosynnema pretiosum. Biotechnol Bioprocess Eng 15:119–125

    Article  CAS  Google Scholar 

  15. Lin J, Bai L, Deng Z, Zhong JJ (2011) Enhanced production of ansamitocin P-3 by addition of isobutanol in fermentation of Actinosynnema pretiosum. Bioresour Technol 102(2):1863–1868

    Article  CAS  PubMed  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  17. Ma N, Wei L, Fan Y, Hua Q (2012) Heterologous expression and characterization of soluble recombinant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase from Actinosynnema pretiosum ssp. auranticum ATCC31565 through co-expression with Chaperones in Escherichia coli. Protein Expr Purif 82(2):263–269. doi:10.1016/j.pep.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  18. Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19(1):70–99

    Article  CAS  PubMed  Google Scholar 

  19. Moss SJ, Bai L, Toelzer S, Carroll BJ, Mahmud T, Yu TW, Floss HG (2002) Identification of asm19 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N-desmethyl-4,5-desepoxymaytansinol, not maytansinol, as its substrate. J Am Chem Soc 124(23):6544–6545

    Article  CAS  PubMed  Google Scholar 

  20. Ng D, Chin HK, Wong VV (2009) Constitutive overexpression of asm2 and asm39 increases AP-3 production in the actinomycete Actinosynnema pretiosum. J Ind Microbiol Biotechnol 36(11):1345–1351

    Article  CAS  PubMed  Google Scholar 

  21. Rawlings BJ (1997) Biosynthesis of polyketides. Nat Prod Rep 14(5):523–556

    Article  CAS  PubMed  Google Scholar 

  22. Ryu YG, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72(11):7132–7139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Salas M, Vinuela E, Sols A (1965) Spontaneous and enzymatically catalyzed anomerization of glucose 6-phosphate and anomeric specificity of related enzymes. J Biol Chem 240:561–568

    CAS  PubMed  Google Scholar 

  24. Spiteller P, Bai L, Shang G, Carroll BJ, Yu TW, Floss HG (2003) The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum. J Am Chem Soc 125(47):14236–14237

    Article  CAS  PubMed  Google Scholar 

  25. Taft F, Brunjes M, Knobloch T, Floss HG, Kirschning A (2009) Timing of the Delta(10,12)-Delta(11,13) double bond migration during ansamitocin biosynthesis in Actinosynnema pretiosum. J Am Chem Soc 131(11):3812–3813

    Article  CAS  PubMed  Google Scholar 

  26. Walton LJ, Corre C, Challis GL (2006) Mechanisms for incorporation of glycerol-derived precursors into polyketide metabolites. J Ind Microbiol Biotechnol 33(2):105–120

    Article  CAS  PubMed  Google Scholar 

  27. Wenzel SC, Williamson RM, Grunanger C, Xu J, Gerth K, Martinez RA, Moss SJ, Carroll BJ, Grond S, Unkefer CJ, Muller R, Floss HG (2006) On the biosynthetic origin of methoxymalonyl-acyl carrier protein, the substrate for incorporation of “glycolate” units into ansamitocin and soraphen A. J Am Chem Soc 128(44):14325–14336

    Article  CAS  PubMed  Google Scholar 

  28. Yu TW, Bai L, Clade D, Hoffmann D, Toelzer S, Trinh KQ, Xu J, Moss SJ, Leistner E, Floss HG (2002) The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 99(12):7968–7973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhou X, Wu H, Li Z, Bai L, Deng Z (2011) Over-expression of UDP-glucose pyrophosphorylase increases validamycin A but decreases validoxylamine A production in Streptomyces hygroscopicus var. jinggangensis 5008. Metab Eng 13(6):768–776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program) (2012CB721101), National Special Fund for State Key Laboratory of Bioreactor Engineering (2060204), and partially supported by Shanghai Leading Academic Discipline Project (B505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Fan, Y., Nambou, K. et al. Enhancement of ansamitocin P-3 production in Actinosynnema pretiosum by a synergistic effect of glycerol and glucose. J Ind Microbiol Biotechnol 41, 143–152 (2014). https://doi.org/10.1007/s10295-013-1374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1374-3

Keywords

Navigation