Journal of Industrial Microbiology & Biotechnology

, Volume 40, Issue 12, pp 1423–1432

Improvement of cell growth and l-lysine production by genetically modified Corynebacterium glutamicum during growth on molasses

  • Jianzhong Xu
  • Junlan Zhang
  • Yanfeng Guo
  • Yugui Zai
  • Weiguo Zhang
Fermentation, Cell Culture and Bioengineering


Fructose-1,6-bisphosphatase (FBPase) and fructokinase (ScrK) have important roles in regenerating glucose-6-phosphate in the pentose phosphate pathway (PPP), and thus increasing l-lysine production. This article focuses on the development of l-lysine high-producing strains by heterologous expression of FBPase gene fbp and ScrK gene scrK in C. glutamicum lysCfbr with molasses as the sole carbon source. Heterologous expression of fbp and scrK lead to a decrease of residual sugar in fermentation broth, and heterologous expression of scrK prevents the fructose efflux. Heterologous expression of fbp and scrK not only increases significantly the activity of corresponding enzymes but also improves cell growth during growth on molasses. FBPase activities are increased tenfold by heterologous expression of fbp, whereas the FBPase activity is only increase fourfold during co-expression of scrK and fbp. Compared with glucose, the DCW of heterologous expression strains are higher on molasses except co-expression of fbp and scrK strain. In addition, heterologous expression of fbp and scrK can strongly increase the l-lysine production with molasses as the sole carbon source. The highest increase (88.4 %) was observed for C. glutamicum lysCfbr pDXW-8-fbp-scrK, but the increase was also significant for C. glutamicum lysCfbr pDXW-8-fbp (47.2 %) and C. glutamicum lysCfbr pDXW-8-scrK (36.8 %). By-products, such as glycerol and dihydroxyacetone, are decreased by heterologous expression of fbp and scrK, whereas trehalose is only slightly increased. The strategy for enhancing l-lysine production by regeneration of glucose-6-phosphate in PPP may provide a reference to enhance the production of other amino acids during growth on molasses or starch.


l-Lysine production Heterologous expression Fructose-1,6-bisphosphatase Fructokinase Molasses 


  1. 1.
    Jakobsen ØM, Brautaset T, Degnes KF, Heggeset TMB, Balzer S, Flickinger MC et al (2009) Overexpression of wild-type aspartokinase increases l-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol 75:652–661. doi:10.1128/AEM.01176-08 PubMedCrossRefGoogle Scholar
  2. 2.
    Kaffas M, Stephanopoulos G (2005) Strain improvement by metabolic engineering: lysine production as a case study for systems biology. Curr Opin Biotechnol 16:361–366. doi:10.1016/j.copbio.2005.04.010 CrossRefGoogle Scholar
  3. 3.
    Wittmann C, Becker J (2007) The l-lysine story: from metabolic pathways to industrial production. Microbiol Monographs 5:39–70. doi:10.1007/7171_2006_089 CrossRefGoogle Scholar
  4. 4.
    Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 71:8587–8596. doi:10.1128/AEM.71.12.8587-8596.2005 PubMedCrossRefGoogle Scholar
  5. 5.
    Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301. doi:10.1016/j.ymben.2005.05.001 PubMedCrossRefGoogle Scholar
  6. 6.
    Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF (2011) Phosphotransferase system (PTS) independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol 77:3571–3581. doi:10.1128/AEM.02713-10 PubMedCrossRefGoogle Scholar
  7. 7.
    Dominguez H, Rollin C, Guyonvarch A, Guerquin-Kern JL, Cocaign-Bousquet M, Lindley ND (1998) Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102. doi:10.1046/j.1432-1327.1998.2540096.x PubMedCrossRefGoogle Scholar
  8. 8.
    Wittmann C, Kiefer P, Zelder O (2004) Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 70:7277–7287. doi:10.1128/AEM.70.12.7277-7287.2004 PubMedCrossRefGoogle Scholar
  9. 9.
    Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl Environ Microbiol 70:229–239. doi:10.1128/AEM.70.1.229-239.2004 PubMedCrossRefGoogle Scholar
  10. 10.
    Pons A, Dussap CG, Pequinot C, Gros JB (1996) Metabolic flux distribution in Corynebacterium melassecola ATCC 17965 for various carbon sources. Biotechnol Bioeng 51:77–189. doi:10.1002/(SICI)1097-0290(19960720)51:2<177:AID-BIT7>3.0.CO;2-G CrossRefGoogle Scholar
  11. 11.
    Peng X, Okai N, Vertès AA, Inatomi K, Inui M, Yukawa H (2011) Characterization of the mannitol catabolic operon of Corynebacterium glutamicum. Appl Microbiol Biotechnol 91:1375–1387. doi:10.1007/s00253-011-3352-x PubMedCrossRefGoogle Scholar
  12. 12.
    Kopsahelis N, Nisiotou A, Kourkoutas Y, Panas P, Nycha GJE, Kanellaki M (2009) Molecular characterization and molasses fermentation performance of a wild yeast strain operating in an extremely wide temperature range. Bioresour Technol 100:4854–4862. doi:10.1016/j.biortech.2009.05.011 PubMedCrossRefGoogle Scholar
  13. 13.
    Olbrich H (2006) The molasses. Biotechnologie-Kempe GmbH, BerlinGoogle Scholar
  14. 14.
    Kopsahelis N, Agouridis N, Bekatorou A, Kanellaki M (2007) Comparative study of spent grains and delignified spent grains as yeast supports for alcohol production from molasses. Bioresour Technol 98:1440–1447. doi:10.1016/j.biortech.2006.03.030 PubMedCrossRefGoogle Scholar
  15. 15.
    Becker J, Klopprogge C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum—over expression and modification of G6P dehydrogenase. J Biotechnol 138:99–109. doi:10.1016/j.jbiotec.2007.05.026 CrossRefGoogle Scholar
  16. 16.
    Becker J, Zelder O, Häfner S, Schröder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13:159–168. doi:10.1016/j.ymben.2011.01.003 PubMedCrossRefGoogle Scholar
  17. 17.
    Sambrook J, Russel DV (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  18. 18.
    van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545PubMedCrossRefGoogle Scholar
  19. 19.
    Hou XH, Ge XY, Wu D, Qian H, Zhang WG (2012) Improvement of l-valine production at high temperature in Brevibacterium flavum by overexpressing ilvEBN r C genes. J Ind Microbiol Biotechnol 39:63–72. doi:10.1007/s10295-011-1000-1 PubMedCrossRefGoogle Scholar
  20. 20.
    Porter EV, Chassy BM, Holmlund CE (1980) Partial purification and properties of a mannofructokinase from Streptococcus mutans SL-1. Infect Immun 30:43–50PubMedGoogle Scholar
  21. 21.
    Periyasamy S, Venkatachalam S, Ramasamy S, Srinivasan V (2009) Production of bio-ethanol from sugar molasses using Saccharomyces cerevisiae. Modern Appl Sci 3:32–37Google Scholar
  22. 22.
    Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244:259–266. doi:10.1016/j.femsle.2005.01.053 PubMedCrossRefGoogle Scholar
  23. 23.
    Dominguez H, Lingdley ND (1996) Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62:3878–3880PubMedGoogle Scholar
  24. 24.
    Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW (1991) Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5:2913–2922. doi:10.1111/j.1365-2958.1991.tb01851.x PubMedCrossRefGoogle Scholar
  25. 25.
    Myung S, Wang Y, Zhang YHP (2010) Fructose-1,6-bisphosphatase from a hyper-thermophilic bacterium Thermotoga maritima: characterization, metabolite stability, and its implications. Process Biochem 45:1882–1887. doi:10.1016/j.procbio.2010.03.017 CrossRefGoogle Scholar
  26. 26.
    Rittmann D, Schaffer S, Wendisch VF, Sahm H (2003) Fructose-1,6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292. doi:10.1007/s00203-003-0588-6 PubMedCrossRefGoogle Scholar
  27. 27.
    Schaftingen EV, Hers HG (1981) Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proc Natl Acad Sci USA 78(5):2861–2863PubMedCrossRefGoogle Scholar
  28. 28.
    Navas MA, Gancedo JM (1996) The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage. J Bacteriol 178:1809–1812PubMedGoogle Scholar
  29. 29.
    Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274. doi:10.1016/j.femsle.2004.11.014 PubMedCrossRefGoogle Scholar
  30. 30.
    Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1:35–48. doi:10.1006/mben.1998.0106 PubMedCrossRefGoogle Scholar
  31. 31.
    Xu DQ, Tan YZ, Huan XJ, Hu XQ, Wang XY (2010) Construction of a novel shuttle vector for use in Brevibacterium flavum, an industrial amino acid producer. J Microbiol Methods 80:86–92. doi:10.1016/j.mimet.2009.11.003 Google Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  • Jianzhong Xu
    • 1
  • Junlan Zhang
    • 2
  • Yanfeng Guo
    • 1
  • Yugui Zai
    • 1
  • Weiguo Zhang
    • 1
  1. 1.The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of BiotechnologyJiangnan UniversityWuXiPeople’s Republic of China
  2. 2.OriGene Biotechnology Co., LtdWuXiPeople’s Republic of China

Personalised recommendations