Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells



Almost all of the 200 or so approved biopharmaceuticals have been produced in one of three host systems: the bacterium Escherichia coli, yeasts (Saccharomyces cerevisiae, Pichia pastoris) and mammalian cells. We describe the most widely used methods for the expression of recombinant proteins in the cytoplasm or periplasm of E. coli, as well as strategies for secreting the product to the growth medium. Recombinant expression in E. coli influences the cell physiology and triggers a stress response, which has to be considered in process development. Increased expression of a functional protein can be achieved by optimizing the gene, plasmid, host cell, and fermentation process. Relevant properties of two yeast expression systems, S. cerevisiae and P. pastoris, are summarized. Optimization of expression in S. cerevisiae has focused mainly on increasing the secretion, which is otherwise limiting. P. pastoris was recently approved as a host for biopharmaceutical production for the first time. It enables high-level protein production and secretion. Additionally, genetic engineering has resulted in its ability to produce recombinant proteins with humanized glycosylation patterns. Several mammalian cell lines of either rodent or human origin are also used in biopharmaceutical production. Optimization of their expression has focused on clonal selection, interference with epigenetic factors and genetic engineering. Systemic optimization approaches are applied to all cell expression systems. They feature parallel high-throughput techniques, such as DNA microarray, next-generation sequencing and proteomics, and enable simultaneous monitoring of multiple parameters. Systemic approaches, together with technological advances such as disposable bioreactors and microbioreactors, are expected to lead to increased quality and quantity of biopharmaceuticals, as well as to reduced product development times.


Biopharmaceutical production Escherichia coli Yeast Mammalian cells Optimization of expression 


  1. 1.
    Aldor IS, Krawitz DC, Forrest W, Chen C, Nishihara JC, Joly JC, Champion KM (2005) Proteomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl Environ Microbiol 71(4):1717–1728PubMedCrossRefGoogle Scholar
  2. 2.
    Arechaga I, Miroux B, Runswick MJ, Walker JE (2003) Over-expression of Escherichia coli F1F(o)-ATPase subunit a is inhibited by instability of the uncB gene transcript. FEBS Lett 547(1–3):97–100PubMedCrossRefGoogle Scholar
  3. 3.
    Baik JY, Lee MS, An SR, Yoon SK, Joo EJ, Kim YH, Park HW, Lee GM (2006) Initial transcriptome and proteome analyses of low culture temperature-induced expression in CHO cells producing erythropoietin. Biotechnol Bioeng 93(2):361–371PubMedCrossRefGoogle Scholar
  4. 4.
    Balbas P, Gosset G (2001) Chromosomal editing in Escherichia coli—vectors for DNA integration and excision. Mol Biotechnol 19(1):1–12PubMedCrossRefGoogle Scholar
  5. 5.
    Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29(5):677–684PubMedCrossRefGoogle Scholar
  6. 6.
    Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotech 10(5):411–421PubMedCrossRefGoogle Scholar
  7. 7.
    Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408PubMedCrossRefGoogle Scholar
  8. 8.
    Becker J, Hackl M, Rupp O, Jakobi T, Schneider J, Szczepanowski R, Bekel T, Borth N, Goesmann A, Grillari J, Kaltschmidt C, Noll T, Puhler A, Tauch A, Brinkrolf K (2011) Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing. J Biotechnol 156(3):227–235PubMedCrossRefGoogle Scholar
  9. 9.
    Bibila TA, Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 11(1):1–13PubMedCrossRefGoogle Scholar
  10. 10.
    Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14(9):757–766PubMedCrossRefGoogle Scholar
  11. 11.
    Boehm T, Pirie-Shepherd S, Trinh LB, Shiloach J, Folkman J (1999) Disruption of the KEX1 gene in Pichia pastoris allows expression of full-length murine and human endostatin. Yeast 15(7):563–572PubMedCrossRefGoogle Scholar
  12. 12.
    Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Valenzuela P, Barr PJ (1984) Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 81(15):4642–4646PubMedCrossRefGoogle Scholar
  13. 13.
    Brezinsky SC, Chiang GG, Szilvasi A, Mohan S, Shapiro RI, MacLean A, Sisk W, Thill G (2003) A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277(1–2):141–155PubMedCrossRefGoogle Scholar
  14. 14.
    Browne SM, Al-Rubeai M (2007) Selection methods for high-producing mammalian cell lines. Trends Biotechnol 25(9):425–432PubMedCrossRefGoogle Scholar
  15. 15.
    Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68(3):283–291PubMedCrossRefGoogle Scholar
  16. 16.
    Cacciatore JJ, Chasin LA, Leonard EF (2010) Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the DHFR-based CHO cell selection system. Biotechnol Adv 28(6):673–681PubMedCrossRefGoogle Scholar
  17. 17.
    Carinhas N, Oliveira R, Alves PM, Carrondo MJ, Teixeira AP (2012) Systems biotechnology of animal cells: the road to prediction. Trends Biotechnol 30(7):377–385PubMedCrossRefGoogle Scholar
  18. 18.
    Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13(4):329–332PubMedCrossRefGoogle Scholar
  19. 19.
    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24(1):45–66PubMedCrossRefGoogle Scholar
  20. 20.
    Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 100(9):5022–5027PubMedCrossRefGoogle Scholar
  21. 21.
    Choi JH, Keum KC, Lee SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 61(3):876–885CrossRefGoogle Scholar
  22. 22.
    Choi JH, Lee SJ, Lee SJ, Lee SY (2003) Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl Environ Microbiol 69(8):4737–4742PubMedCrossRefGoogle Scholar
  23. 23.
    Chou CP (2007) Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biot 76(3):521–532CrossRefGoogle Scholar
  24. 24.
    Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74(4):288–294PubMedCrossRefGoogle Scholar
  25. 25.
    Dieci G, Bottarelli L, Ballabeni A, Ottonello S (2000) tRNA-assisted overproduction of eukaryotic ribosomal proteins. Protein Expr Purif 18(3):346–354PubMedCrossRefGoogle Scholar
  26. 26.
    Dietmair S, Hodson MP, Quek LE, Timmins NE, Gray P, Nielsen LK (2012) A multi-omics analysis of recombinant protein production in hek293 cells. PLoS ONE 7(8):e43394PubMedCrossRefGoogle Scholar
  27. 27.
    Dietmair S, Nielsen LK, Timmins NE (2012) Mammalian cells as biopharmaceutical production hosts in the age of omics. Biotechnol J 7(1):75–89PubMedCrossRefGoogle Scholar
  28. 28.
    Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86(1):41–49PubMedCrossRefGoogle Scholar
  29. 29.
    Eiden-Plach A, Zagorc T, Heintel T, Carius Y, Breinig F, Schmitt MJ (2004) Viral preprotoxin signal sequence allows efficient secretion of green fluorescent protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Appl Environ Microbiol 70(2):961–966PubMedCrossRefGoogle Scholar
  30. 30.
    Farmer WR, Liao JC (1997) Reduction of aerobic acetate production by Escherichia coli. Appl Environ Microbiol 63(8):3205–3210PubMedGoogle Scholar
  31. 31.
    Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861PubMedCrossRefGoogle Scholar
  32. 32.
    Figueroa B Jr, Sauerwald TM, Oyler GA, Hardwick JM, Betenbaugh MJ (2003) A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metab Eng 5(4):230–245PubMedCrossRefGoogle Scholar
  33. 33.
    Franchini AG, Egli T (2006) Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152(Pt 7):2111–2127PubMedCrossRefGoogle Scholar
  34. 34.
    Fukushige S, Sauer B (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA 89(17):7905–7909PubMedCrossRefGoogle Scholar
  35. 35.
    Funke M, Buchenauer A, Mokwa W, Kluge S, Hein L, Muller C, Kensy F, Buchs J (2010) Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Fact 9:86PubMedCrossRefGoogle Scholar
  36. 36.
    Fussenegger M, Schlatter S, Datwyler D, Mazur X, Bailey JE (1998) Controlled proliferation by multigene metabolic engineering enhances the productivity of Chinese hamster ovary cells. Nat Biotechnol 16(5):468–472PubMedCrossRefGoogle Scholar
  37. 37.
    Gasser B, Sauer M, Maurer M, Stadlmayr G, Mattanovich D (2007) Transcriptomics-based identification of novel factors enhancing heterologous protein secretion in yeasts. Appl Environ Microbiol 73(20):6499–6507PubMedCrossRefGoogle Scholar
  38. 38.
    Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22(11):1409–1414PubMedCrossRefGoogle Scholar
  39. 39.
    Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF (2009) Sensors in disposable bioreactors status and trends. Adv Biochem Eng Biotechnol 115:145–169Google Scholar
  40. 40.
    Goncalves GA, Bower DM, Prazeres DM, Monteiro GA, Prather KL (2012) Rational engineering of Escherichia coli strains for plasmid biopharmaceutical manufacturing. Biotechnol J 7(2):251–261PubMedCrossRefGoogle Scholar
  41. 41.
    Gorfien S, Paul B, Walowitz J, Keem R, Biddle W, Jayme D (2000) Growth of NS0 cells in protein-free, chemically defined medium. Biotechnol Prog 16(5):682–687PubMedCrossRefGoogle Scholar
  42. 42.
    Gottschalk U, Brorson K, Shukla AA (2012) The need for innovation in biomanufacturing. Nat Biotechnol 30(6):489–492PubMedCrossRefGoogle Scholar
  43. 43.
    Griffin TJ, Seth G, Xie H, Bandhakavi S, Hu WS (2007) Advancing mammalian cell culture engineering using genome-scale technologies. Trends Biotechnol 25(9):401–408PubMedCrossRefGoogle Scholar
  44. 44.
    Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177(14):4121–4130PubMedGoogle Scholar
  45. 45.
    Haddadin FT, Harcum SW (2005) Transcriptome profiles for high-cell-density recombinant and wild-type Escherichia coli. Biotechnol Bioeng 90(2):127–153PubMedCrossRefGoogle Scholar
  46. 46.
    Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301(5637):1244–1246PubMedCrossRefGoogle Scholar
  47. 47.
    Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski H, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313(5792):1441–1443PubMedCrossRefGoogle Scholar
  48. 48.
    Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18(5):387–392PubMedCrossRefGoogle Scholar
  49. 49.
    Han MJ, Jeong KJ, Yoo JS, Lee SY (2003) Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl Environ Microbiol 69(10):5772–5781PubMedCrossRefGoogle Scholar
  50. 50.
    Hanania EG, Fieck A, Stevens J, Bodzin LJ, Palsson BO, Koller MR (2005) Automated in situ measurement of cell-specific antibody secretion and laser-mediated purification for rapid cloning of highly-secreting producers. Biotechnol Bioeng 91(7):872–876PubMedCrossRefGoogle Scholar
  51. 51.
    Harmsen MM, Bruyne MI, Raue HA, Maat J (1996) Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl Microbiol Biotechnol 46(4):365–370PubMedCrossRefGoogle Scholar
  52. 52.
    Hartl FU, Hayer-Hartl M (2002) Protein folding—molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858PubMedCrossRefGoogle Scholar
  53. 53.
    Holmes P, Al-Rubeai M (1999) Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230(1–2):141–147PubMedCrossRefGoogle Scholar
  54. 54.
    Hong E, Davidson AR, Kaiser CA (1996) A pathway for targeting soluble misfolded proteins to the yeast vacuole. J Cell Biol 135(3):623–633PubMedCrossRefGoogle Scholar
  55. 55.
    Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949PubMedCrossRefGoogle Scholar
  56. 56.
    Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12(5):491–510PubMedCrossRefGoogle Scholar
  57. 57.
    Idicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Sci 14(3):582–592PubMedCrossRefGoogle Scholar
  58. 58.
    Idicula-Thomas S, Kulkarni AJ, Jayaraman VK, Balaji PV (2006) A support vector machine-based method for predicting the propensity of a protein to be soluble or to form inclusion body on overexpression in Escherichia coli. Bioinformatics 22(3):278–284PubMedCrossRefGoogle Scholar
  59. 59.
    Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417PubMedCrossRefGoogle Scholar
  60. 60.
    Idiris A, Tohda H, Sasaki M, Okada K, Kumagai H, Giga-Hama Y, Takegawa K (2010) Enhanced protein secretion from multiprotease-deficient fission yeast by modification of its vacuolar protein sorting pathway. Appl Microbiol Biotechnol 85(3):667–677PubMedCrossRefGoogle Scholar
  61. 61.
    Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biot 67(3):289–298CrossRefGoogle Scholar
  62. 62.
    Jeong D, Kim TS, Lee JW, Kim KT, Kim HJ, Kim IH, Kim IY (2001) Blocking of acidosis-mediated apoptosis by a reduction of lactate dehydrogenase activity through antisense mRNA expression. Biochem Biophys Res Commun 289(5):1141–1149PubMedCrossRefGoogle Scholar
  63. 63.
    Jeong KJ, Choi JH, Yoo WM, Keum KC, Yoo NC, Lee SY, Sung MH (2004) Constitutive production of human leptin by fed-batch culture of recombinant rpoS-Escherichia coli. Protein Expr Purif 36(1):150–156PubMedCrossRefGoogle Scholar
  64. 64.
    Jeong KJ, Lee SY (1999) High-level production of human leptin by fed-batch cultivation of recombinant Escherichia coli and its purification. Appl Environ Microbiol 65(7):3027–3032PubMedGoogle Scholar
  65. 65.
    Jeong KJ, Lee SY (2003) Enhanced production of recombinant proteins in Escherichia coli by filamentation suppression. Appl Environ Microbiol 69(2):1295–1298PubMedCrossRefGoogle Scholar
  66. 66.
    Jones EW (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol 194:428–453PubMedCrossRefGoogle Scholar
  67. 67.
    Jonson L, Rehfeld JF, Johnsen AH (2004) Enhanced peptide secretion by gene disruption of CYM1, a novel protease in Saccharomyces cerevisiae. Eur J Biochem 271(23–24):4788–4797PubMedCrossRefGoogle Scholar
  68. 68.
    Kamionka M (2011) Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12(2):268–274PubMedCrossRefGoogle Scholar
  69. 69.
    Kanjou N, Nagao A, Ohmiya Y, Ohgiya S (2007) Yeast mutant with efficient secretion identified by a novel secretory reporter, Cluc. Biochem Biophys Res Commun 358(2):429–434PubMedCrossRefGoogle Scholar
  70. 70.
    Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27(6):879–894PubMedCrossRefGoogle Scholar
  71. 71.
    Kennard ML (2011) Engineered mammalian chromosomes in cellular protein production: future prospects. Methods Mol Biol 738:217–238PubMedCrossRefGoogle Scholar
  72. 72.
    Kim NS, Lee GM (2002) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng 78(2):217–228PubMedCrossRefGoogle Scholar
  73. 73.
    Kingsman SM, Kingsman AJ, Dobson MJ, Mellor J, Roberts NA (1985) Heterologous gene expression in Saccharomyces cerevisiae. Biotechnol Genet Eng Rev 3:377–416PubMedGoogle Scholar
  74. 74.
    Kito M, Itami S, Fukano Y, Yamana K, Shibui T (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl Microbiol Biotechnol 60(4):442–448PubMedCrossRefGoogle Scholar
  75. 75.
    Knappskog S, Ravneberg H, Gjerdrum C, Trosse C, Stern B, Pryme IF (2007) The level of synthesis and secretion of Gaussia princeps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide. J Biotechnol 128(4):705–715PubMedCrossRefGoogle Scholar
  76. 76.
    Korke R, Gatti Mde L, Lau AL, Lim JW, Seow TK, Chung MC, Hu WS (2004) Large scale gene expression profiling of metabolic shift of mammalian cells in culture. J Biotechnol 107(1):1–17PubMedCrossRefGoogle Scholar
  77. 77.
    Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24(3):137–142PubMedCrossRefGoogle Scholar
  78. 78.
    Kwaks TH, Sewalt RG, van Blokland R, Siersma TJ, Kasiem M, Kelder A, Otte AP (2005) Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells. J Biotechnol 115(1):35–46PubMedCrossRefGoogle Scholar
  79. 79.
    Laursen BS, Steffensen SAD, Hedegaard J, Moreno JMP, Mortensen KK, Sperling-Petersen HU (2002) Structural requirements of the mRNA for intracistronic translation initiation of the enterobacterial infB gene. Genes Cells 7(9):901–910PubMedCrossRefGoogle Scholar
  80. 80.
    Lee MS, Kim KW, Kim YH, Lee GM (2003) Proteome analysis of antibody-expressing CHO cells in response to hyperosmotic pressure. Biotechnol Prog 19(6):1734–1741PubMedCrossRefGoogle Scholar
  81. 81.
    Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105PubMedCrossRefGoogle Scholar
  82. 82.
    Lopes TS, Klootwijk J, Veenstra AE, van der Aar PC, van Heerikhuizen H, Raue HA, Planta RJ (1989) High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene 79(2):199–206PubMedCrossRefGoogle Scholar
  83. 83.
    Luan CH, Qiu SH, Finley JB, Carson M, Gray RJ, Huang WY, Johnson D, Tsao J, Reboul J, Vaglio P, Hill DE, Vidal M, Delucas LJ, Luo M (2004) High-throughput expression of C. elegans proteins. Genome Res 14(10B):2102–2110PubMedCrossRefGoogle Scholar
  84. 84.
    Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22(4):249–270PubMedCrossRefGoogle Scholar
  85. 85.
    Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512PubMedGoogle Scholar
  86. 86.
    Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15(2):163–176PubMedCrossRefGoogle Scholar
  87. 87.
    Mastrangelo AJ, Hardwick JM, Zou S, Betenbaugh MJ (2000) Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol Bioeng 67(5):555–564PubMedCrossRefGoogle Scholar
  88. 88.
    Mattanovich D, Borth N (2006) Applications of cell sorting in biotechnology. Microb Cell Fact 5:12PubMedCrossRefGoogle Scholar
  89. 89.
    Meng YG, Liang J, Wong WL, Chisholm V (2000) Green fluorescent protein as a second selectable marker for selection of high producing clones from transfected CHO cells. Gene 242(1–2):201–207PubMedCrossRefGoogle Scholar
  90. 90.
    Mercille S, Johnson M, Lanthier S, Kamen AA, Massie B (2000) Understanding factors that limit the productivity of suspension-based perfusion cultures operated at high medium renewal rates. Biotechnol Bioeng 67(4):435–450PubMedCrossRefGoogle Scholar
  91. 91.
    Micheletti M, Lye GJ (2006) Microscale bioprocess optimisation. Curr Opin Biotechnol 17(6):611–618PubMedCrossRefGoogle Scholar
  92. 92.
    Nakanishi-Shindo Y, Nakayama K, Tanaka A, Toda Y, Jigami Y (1993) Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J Biol Chem 268(35):26338–26345PubMedGoogle Scholar
  93. 93.
    Nandakumar MP, Cheung A, Marten MR (2006) Proteomic analysis of extracellular proteins from Escherichia coli W3110. J Proteome Res 5(5):1155–1161PubMedCrossRefGoogle Scholar
  94. 94.
    Natale P, Bruser T, Driessen AJM (2008) Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms. BBA-Biomembranes 1778(9):1735–1756PubMedCrossRefGoogle Scholar
  95. 95.
    Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31(11):1661–1670PubMedCrossRefGoogle Scholar
  96. 96.
    Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, Escherichia coli. Appl Environ Microbiol 64(5):1694–1699PubMedGoogle Scholar
  97. 97.
    Noguchi A, Mukuria CJ, Suzuki E, Naiki M (1995) Immunogenicity of N-glycolylneuraminic acid-containing carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. J Biochem 117(1):59–62PubMedGoogle Scholar
  98. 98.
    Opar A (2011) ‘Pharmers’ hope for first plant drug harvest. Nat Rev Drug Discov 10(2):81–82PubMedCrossRefGoogle Scholar
  99. 99.
    Palermo DP, DeGraaf ME, Marotti KR, Rehberg E, Post LE (1991) Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. J Biotechnol 19(1):35–47PubMedCrossRefGoogle Scholar
  100. 100.
    Parente D, Raucci G, D’Alatri L, d’Estais G, Novelli S, Pacilli A, Saccinto MP, Mele A, De Santis R (1998) Overproduction of soluble, extracellular cytotoxin alpha-sarcin in Escherichia coli. Mol Biotechnol 9(2):99–106PubMedCrossRefGoogle Scholar
  101. 101.
    Payne T, Finnis C, Evans LR, Mead DJ, Avery SV, Archer DB, Sleep D (2008) Modulation of chaperone gene expression in mutagenized Saccharomyces cerevisiae strains developed for recombinant human albumin production results in increased production of multiple heterologous proteins. Appl Environ Microbiol 74(24):7759–7766PubMedCrossRefGoogle Scholar
  102. 102.
    Posfai G, Plunkett G 3rd, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312(5776):1044–1046PubMedCrossRefGoogle Scholar
  103. 103.
    Rinas U, Bailey JE (1992) Protein Compositional Analysis of Inclusion-Bodies Produced in Recombinant Escherichia coli. Appl Microbiol Biot 37(5):609–614CrossRefGoogle Scholar
  104. 104.
    Ritz D, Beckwith J (2001) Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21–48PubMedCrossRefGoogle Scholar
  105. 105.
    Robbens J, Raeymaekers A, Steidler L, Fiers W, Remaut E (1995) Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release, and purification. Protein Expr Purif 6(4):481–486PubMedCrossRefGoogle Scholar
  106. 106.
    Robinson AS, Hines V, Wittrup KD (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology 12(4):381–384PubMedCrossRefGoogle Scholar
  107. 107.
    Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8(6):423–488PubMedCrossRefGoogle Scholar
  108. 108.
    Ruohonen L, Toikkanen J, Tieaho V, Outola M, Soderlund H, Keranen S (1997) Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery. Yeast 13(4):337–351PubMedCrossRefGoogle Scholar
  109. 109.
    Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioeng 69(4):440–449PubMedCrossRefGoogle Scholar
  110. 110.
    Schapper D, Alam MN, Szita N, Eliasson Lantz A, Gernaey KV (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395(3):679–695PubMedCrossRefGoogle Scholar
  111. 111.
    Seth G, Philp RJ, Denoya CD, McGrath K, Stutzman-Engwall KJ, Yap M, Hu WS (2005) Large-scale gene expression analysis of cholesterol dependence in NS0 cells. Biotechnol Bioeng 90(5):552–567PubMedCrossRefGoogle Scholar
  112. 112.
    Sharma SS, Blattner FR, Harcum SW (2007) Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 9(2):133–141PubMedCrossRefGoogle Scholar
  113. 113.
    Shusta EV, Raines RT, Pluckthun A, Wittrup KD (1998) Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16(8):773–777PubMedCrossRefGoogle Scholar
  114. 114.
    Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310PubMedCrossRefGoogle Scholar
  115. 115.
    Smith JD, Tang BC, Robinson AS (2004) Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnol Bioeng 85(3):340–350PubMedCrossRefGoogle Scholar
  116. 116.
    Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128PubMedCrossRefGoogle Scholar
  117. 117.
    St John TP, Davis RW (1981) The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol Biol 152(2):285–315PubMedCrossRefGoogle Scholar
  118. 118.
    Stewart EJ, Aslund F, Beckwith J (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17(19):5543–5550PubMedCrossRefGoogle Scholar
  119. 119.
    Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89PubMedCrossRefGoogle Scholar
  120. 120.
    Taylor G, Hoare M, Gray DR, Marston FAO (1986) Size and density of protein inclusion-bodies. Bio-Technology 4(6):553–557CrossRefGoogle Scholar
  121. 121.
    Treier K, Hansen S, Richter C, Diederich P, Hubbuch J, Lester P (2012) High-throughput methods for miniaturization and automation of monoclonal antibody purification processes. Biotechnol Prog 28(3):723–732PubMedCrossRefGoogle Scholar
  122. 122.
    van der Heide M, Hollenberg CP, van der Klei IJ, Veenhuis M (2002) Overproduction of BiP negatively affects the secretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha. Appl Microbiol Biotechnol 58(4):487–494PubMedCrossRefGoogle Scholar
  123. 123.
    Van Dyk DD, Misztal DR, Wilkins MR, Mackintosh JA, Poljak A, Varnai JC, Teber E, Walsh BJ, Gray PP (2003) Identification of cellular changes associated with increased production of human growth hormone in a recombinant Chinese hamster ovary cell line. Proteomics 3(2):147–156PubMedCrossRefGoogle Scholar
  124. 124.
    Vijayendran C, Flaschel E (2010) Impact of profiling technologies in the understanding of recombinant protein production. Adv Biochem Eng Biotechnol 121:45–70PubMedGoogle Scholar
  125. 125.
    Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793PubMedCrossRefGoogle Scholar
  126. 126.
    Walsh G (2010) Biopharmaceutical benchmarks 2010. Nat Biotechnol 28(9):917–924PubMedCrossRefGoogle Scholar
  127. 127.
    Walsh G (2012) New biopharmaceuticals. Biopharm Int 25(6):34–36Google Scholar
  128. 128.
    Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252PubMedCrossRefGoogle Scholar
  129. 129.
    Wang L (2009) Towards revealing the structure of bacterial inclusion bodies. Prion 3(3):139–145PubMedCrossRefGoogle Scholar
  130. 130.
    Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R (2008) Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol 6(8):e195PubMedCrossRefGoogle Scholar
  131. 131.
    Weaver JC, McGrath P, Adams S (1997) Gel microdrop technology for rapid isolation of rare and high producer cells. Nat Med 3(5):583–585PubMedCrossRefGoogle Scholar
  132. 132.
    Wegner GH (1990) Emerging applications of the methylotrophic yeasts. FEMS Microbiol Rev 7(3–4):279–283PubMedGoogle Scholar
  133. 133.
    Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm V, Modi N, Eppler S, Carroll K, Chamow S, Peers D, Berman P, Krummen L (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121PubMedCrossRefGoogle Scholar
  134. 134.
    Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C (2009) Design parameters to control synthetic gene expression in Escherichia coli. Plos One 4(9):e7002Google Scholar
  135. 135.
    Wewetzer K, Seilheimer B (1995) Establishment of a single-step hybridoma cloning protocol using an automated cell transfer system: comparison with limiting dilution. J Immunol Methods 179(1):71–76PubMedCrossRefGoogle Scholar
  136. 136.
    Wilkinson DL, Harrison RG (1991) Predicting the solubility of recombinant proteins in Escherichia coli. Bio-Technol 9(5):443–448CrossRefGoogle Scholar
  137. 137.
    Wu SC (2009) RNA interference technology to improve recombinant protein production in Chinese hamster ovary cells. Biotechnol Adv 27(4):417–422PubMedCrossRefGoogle Scholar
  138. 138.
    Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11):1393–1398PubMedCrossRefGoogle Scholar
  139. 139.
    Wurm FM, Gwinn KA, Kingston RE (1986) Inducible overproduction of the mouse c-myc protein in mammalian cells. Proc Natl Acad Sci USA 83(15):5414–5418PubMedCrossRefGoogle Scholar
  140. 140.
    Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W, Hammond S, Andersen MR, Neff N, Passarelli B, Koh W, Fan HC, Wang J, Gui Y, Lee KH, Betenbaugh MJ, Quake SR, Famili I, Palsson BO, Wang J (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol 29(8):735–741PubMedCrossRefGoogle Scholar
  141. 141.
    Yoon SK, Kim SH, Lee GM (2003) Effect of low culture temperature on specific productivity and transcription level of anti-4-1BB antibody in recombinant Chinese hamster ovary cells. Biotechnol Prog 19(4):1383–1386PubMedCrossRefGoogle Scholar
  142. 142.
    Zhang B, Chang A, Kjeldsen TB, Arvan P (2001) Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 153(6):1187–1198PubMedCrossRefGoogle Scholar
  143. 143.
    Zhang G, Brokx S, Weiner JH (2006) Extracellular accumulation of recombinant proteins fused to the carrier protein YebF in Escherichia coli. Nat Biotechnol 24(1):100–104PubMedCrossRefGoogle Scholar
  144. 144.
    Zhou H, Liu ZG, Sun ZW, Huang Y, Yu WY (2010) Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. J Biotechnol 147(2):122–129PubMedCrossRefGoogle Scholar
  145. 145.
    Zhu J (2012) Mammalian cell protein expression for biopharmaceutical production. Biotechnol Adv 30(5):1158–1170PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  1. 1.Department of BiotechnologyJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Faculty of PharmacyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations