Skip to main content
Log in

From laboratory to pilot plant E. coli fed-batch cultures: optimizing the cellular environment for protein maximization

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology


For recombinant protein production in E. coli fed-batch cultures, post-induction conditions have great influence in the quantity and quality of the product. The present paper covers the effect of different factors affecting the cellular environment in recombinant aldolase (rhamnulose-1-phosphate aldolase, RhuA) production. An operational mode employing an exponential addition profile for constant specific growth rate has been analyzed, in order to understand and define possible modifications with influence on post-induction cellular behavior. A constant addition profile has been demonstrated to render higher specific aldolase production than the exponential addition profile, probably due to a more constant environment for the cells. On the other hand, amino acid (leucine) supplementation has proven to increase protein quality in terms of activity units (U) per unit mass of RhuA (U mg−1 RhuA), alleviating metabolic overload. Based on the above, a production process was set up and scaled up to pilot plant. Resulting production was double that of a standard laboratory operation, 45,000 U L−1, and almost all the protein retained the 6xHis-tag with the highest quality, 11.3 U mg−1 RhuA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Bailey JE, Ollis DF (1988) Biochemical engineering fundamentals. Mc Graw Hill, NY

    Google Scholar 

  2. Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4:160–165

    Article  PubMed  CAS  Google Scholar 

  3. Chen X et al (2012) Optimization of glucose feeding approaches for enhanced glucosamine and N-acetylglucosamine production by and engineered Escherichia coli. J Ind Microbiol Biotechnol 39:359–365

    Article  PubMed  CAS  Google Scholar 

  4. Chung HJ, Bang W, Drake MA (2006) Stress response of Escherichia coli. Compr Rev Food Sci F 5:52–64

    Article  CAS  Google Scholar 

  5. Durany O, de Mas C, Lopez-Santin J (2005) Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochem 40:707–716

    Article  CAS  Google Scholar 

  6. Ferullo DJ, Lovett ST (2008) The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet, 4(12) doi: 10.1371/journal.pgen.1000300

  7. Gottesman S, Maurizi MR (1992) Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56:592–621

    PubMed  CAS  Google Scholar 

  8. Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  PubMed  CAS  Google Scholar 

  9. Harcum SW, Ramirez DM, Bentley WE (1992) Optimal nutrient feed policies for heterologous protein production. Appl Biochem Biotech 34–35:161–173

    Article  Google Scholar 

  10. Huang C-J, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39:383–399

    Article  PubMed  CAS  Google Scholar 

  11. Jordan GL, Harcum SW (2002) Characterization of up-regulated proteases in an industrial recombinant Escherichia coli fermentation. J Ind Microbiol Biotechnol 28:74–80

    PubMed  CAS  Google Scholar 

  12. National Center for Biotechnology Information [cited 2012 25-03]. Available from

  13. Paul A et al (1998) Effect of coordinated addition of specific amino acids on the synthesis of recombinant glucose isomerase—differential roles of magnesium and cobalt ions. Enzyme Microb Tech 23:506–510

    Article  CAS  Google Scholar 

  14. Ramirez DM, Bentley WE (1993) Enhancement of recombinant protein synthesis and stability via coordinated amino acid addition. Biotechnol Bioeng 41:557–565

    Article  CAS  Google Scholar 

  15. Ramirez DM, Bentley WE (1995) Fed-batch feeding and induction policies that improve foreign protein synthesis and stability by avoiding stress responses. Biotechnol Bioeng 47:596–608

    Article  PubMed  CAS  Google Scholar 

  16. Rozkov A, Enfors S-O (2004) Analysis and control of proteolysis of recombinant proteins in Escherichia coli. Adv Biochem Eng Biotechnol 89:163–195

    PubMed  CAS  Google Scholar 

  17. Ruiz J et al (2009) Alternative production process strategies in E. coli improving protein quality and downstream yields. Process Biochem 44:1039–1045

    Article  CAS  Google Scholar 

  18. Ruiz J, González G, de Mas C, Lopez-Santin J (2011) A semiempirical model to control the production of a recombinant aldolase in high cell density cultures of Escherichia coli. Biochem Eng J 55:82–91

    Article  CAS  Google Scholar 

  19. Sanden AM et al (2003) Limiting factors in Escherichia coli fed-batch production of recombinant proteins. Biotechnol Bioeng 81:158–166

    Article  PubMed  CAS  Google Scholar 

  20. Schweder T et al (2002) Role of the general stress response during strong overexpression of a heterologous gene in Escherichia coli. Appl Microbiol Biot 58:330–337

    Article  CAS  Google Scholar 

  21. Siurkus J et al (2010) Novel approach of high cell density recombinant process development: optimisation and scale-up from microlitre to pilot plant scales maintaining the fed batch cultivation mode of E. coli cultures. Microb Cell Fact 9:35

    Article  PubMed  Google Scholar 

  22. Traxler MF et al (2008) The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68:1128–1148

    Article  PubMed  CAS  Google Scholar 

  23. Tripathi NK, Sathyaseelan K, Jana AM, Rao PVL (2009) High Yield Production of Heterologous Proteins with Escherichia coli. Def Sci J 59:137–146

    CAS  Google Scholar 

  24. Vidal L et al (2003) High-level production of recombinant His-tagged rhamnulose 1-phosphate aldolase in Escherichia coli. J Chem Technol Biotechnol 78:1171–1179

    Article  CAS  Google Scholar 

  25. Vidal L, Pinsach J, Streidner G, Caminal G, Ferrer P (2008) Development of antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. J Biotechnol 134:127–136

    Article  PubMed  CAS  Google Scholar 

  26. Wick LM, Egli T (2004) Molecular components of physiological stress responses in Escherichia coli. Adv Biochem Eng Biotechnol 89:1–45

    PubMed  CAS  Google Scholar 

  27. Wong HH, Kim YCh, Lee SY, Chang HN (1998) Effect of post-induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol Bioeng 60:271–276

    Article  PubMed  CAS  Google Scholar 

  28. Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures of Escherichia coli. Biotechnology 10:1550–1556

    Article  PubMed  CAS  Google Scholar 

Download references


This work has been supported by the Spanish MICINN, projects CTQ2008-00578 and CTQ2011-28398-C02-01 and by DURSI 2009SGR281 Generalitat de Catalunya. The Department of Chemical Engineering of UAB constitutes the Biochemical Engineering Unit of the Reference Network in Biotechnology of the Generalitat de Catalunya (XRB). Alfred Fernández-Castané acknowledges UAB for a predoctoral grant.

Author information

Authors and Affiliations


Corresponding author

Correspondence to J. López-Santín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, J., Fernández-Castané, A., de Mas, C. et al. From laboratory to pilot plant E. coli fed-batch cultures: optimizing the cellular environment for protein maximization. J Ind Microbiol Biotechnol 40, 335–343 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: