The role of aldehyde/alcohol dehydrogenase (AdhE) in ethanol production from glycerol by Klebsiella pneumoniae



Transcriptome analysis of a K. pneumoniae GEM167 mutant strain derived by irradiation with gamma rays, which exhibited high-level production of ethanol from glycerol, showed that the mutant expressed AdhE at a high level. Ethanol production decreased significantly, from 8.8 to 0.5 g l−1, when an adhE-deficient derivative of that strain was grown on glycerol. Bacterial growth was also reduced under such conditions, showing that AdhE plays a critical role in maintenance of redox balance by catalyzing ethanol production. Overexpression of AdhE enhanced ethanol production, from pure or crude glycerol, to a maximal level of 31.9 g l−1 under fed-batch fermentation conditions; this is the highest level of ethanol production from glycerol reported to date.


Klebsiella pneumoniae Glycerol Ethanol Aldehyde/alcohol dehydrogenase (AdhE) 

Supplementary material

10295_2012_1224_MOESM1_ESM.doc (327 kb)
Supplementary material 1 (DOC 327 kb)


  1. 1.
    Al-Khaldi SF, Mossoba MM, Allard MM, Lienau EK, Brown ED (2012) Bacterial identification and sub typing using DNA microarray and DNA sequencing. Methods Mol Biol 881:73–95. doi:10.1007/978-1-61779-827-6-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Brown SD, Guss AM, Karponets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez MJ, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci 108:13752–13757. doi:10.1073/pnas.1102444108 PubMedCrossRefGoogle Scholar
  3. 3.
    Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. Appl Microbiol Biotechnol 89:1255–1264. doi:10.1007/s00253-010-3078-3 PubMedCrossRefGoogle Scholar
  4. 4.
    Dan M, Wang CC (2000) Role of alcohol dehydrogenase E (ADHE) in the energy metabolism of Giardia lamblia. Mol Biochem Parasitol 109:25–36. doi:10.1016/S0166-6851-4 PubMedCrossRefGoogle Scholar
  5. 5.
    da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39. doi:10.1016/j.biotechadv.2008.07.006 PubMedCrossRefGoogle Scholar
  6. 6.
    Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829. doi:10.1002/bit.21025 PubMedCrossRefGoogle Scholar
  7. 7.
    Durnin G, Clomburg J, Yeates Z, Alvarez PJJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the micro aerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103:148–161. doi:10.1002/bit.22246 PubMedCrossRefGoogle Scholar
  8. 8.
    Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10:234–245. doi:10.1016/j.ymben.2008.05.001 PubMedCrossRefGoogle Scholar
  9. 9.
    Jian J, Zhang SQ, Shi ZY, Wang W, Chen GQ, Wu Q (2010) Production of ployhydroxyalkanoates by Escherichia coli mutants with defected mixed acid fermentation pathways. Appl Microbiol Biotechnol 87:2247–2256. doi:10.1007/s00253-010-2706-0 PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348. doi:10.1002/ep.10225 CrossRefGoogle Scholar
  11. 11.
    Liu X, Jensen PR, Workman M (2012) Bioconversion of crude glycerol feed stocks into ethanol by Pacjysolen tannophilus. Bioresource Tech 104:579–586. doi:10.1016/j.biortech.2011.10.065 CrossRefGoogle Scholar
  12. 12.
    Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28:1755–1759. doi:10.1007/s10529-006-9154-z PubMedCrossRefGoogle Scholar
  13. 13.
    Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentation utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 17:1124–1135. doi:10.1128/AEM.02192-07 CrossRefGoogle Scholar
  14. 14.
    Nikel PI, Pettinari MJ, Ramírez MC, Galvagno MA, Méndez BS (2008) Escherichia coli arcA mutants: metabolic profile characterization of micro aerobic cultures using glycerol as a carbon source. J Mol Microbiol Biotechnol 15:48–54. doi:10.1159/000111992 PubMedCrossRefGoogle Scholar
  15. 15.
    Oh BR, Seo JW, Heo SY, Hong WK, Luo LH, Joe MH, Park DH, Kim CH (2011) Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. Bioresour Tech 102:3918–3922. doi:10.1016/j.biortech.2010.12.007 CrossRefGoogle Scholar
  16. 16.
    Peng H, Wu G, Shao W (2008) The aldehyde/alcohol dehydrogenase (AdhE) in relation to the ethanol formation in Thermoanaerobacter ethanolicus JW200. Anaerobe 14:125–127. doi:10.1016/j.anaerobe.2007.09.004 PubMedCrossRefGoogle Scholar
  17. 17.
    Postma E, Verduyn C, Scheffers WA, Van Dijken JP (1989) Enzymatic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477PubMedGoogle Scholar
  18. 18.
    Sangproo M, Polyiam P, Jantama SS, Kanchanatawee S, Jantama K (2012) Metabolic engineering of Klebsiella oxytoca M5a1 to produce optically pure d-lactate in mineral salts medium. Bioresour Technol 119:191–198. doi:10.1016/j.biotech.2012.05.114 PubMedCrossRefGoogle Scholar
  19. 19.
    Seo MY, Seo JW, Heo SY, Baek JO, Rairakhwada D, Oh BR, Seo PS, Choi MH, Kim CH (2009) Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl Microbiol Biotechnol 84:527–534. doi:10.1007/s00253-009-1980-1 PubMedCrossRefGoogle Scholar
  20. 20.
    Trinh CT, Li J, Blanch HW, Clark DS (2011) Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl Environ Microbiol 77:4894–4904. doi:10.1128/AEM.00382-11 PubMedCrossRefGoogle Scholar
  21. 21.
    Wu X, Li Q, Dieudonne M, Cong Y, Zhou J, Long M (2010) Enhanced H2 gas production from bagasse using adhE inactivated Klebsiella oxytoca HP1 by sequential dark-photo fermentations. Bioresour Technol 101:9605–9611. doi:10.1016/j.biotech.2010.07.095 PubMedCrossRefGoogle Scholar
  22. 22.
    Yao S, Mikkelsen MJ (2010) Identification and Overexpression of a Bifunctional Aldehyde/Alcohol Dehydrogenase Responsible for Ethanol Production in Thermoanaerobacter mathranii. Mol Microbiol Biotechnol 19:123–133. doi:10.1159/000321498 CrossRefGoogle Scholar
  23. 23.
    Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024. doi:10.1007/s00449-011-0603-2 PubMedCrossRefGoogle Scholar
  24. 24.
    Yun NR, San KY, Bennett GN (2005) Enhancement of lactate and succinate formation in adhE or pta-ackA mutants of NADH dehydrogenase-deficient Escherichia coli. J Appl Microbiol 99:1404–1412. doi:10.1111/j.1365-2672.2005.02724.x PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  1. 1.Applied Microbiology Research Center, Bio-Materials Research InstituteKorea Research Institute of Bioscience and Biotechnology (KRIBB)JeongeupKorea
  2. 2.Radiation Research Division for BiotechnologyKorea Atomic Energy Research InstituteJeonbukSouth Korea

Personalised recommendations