Skip to main content
Log in

Microbial transformations of antimicrobial quinolones and related drugs

  • Mini-Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The quinolones are an important group of synthetic antimicrobial drugs used for treating bacterial diseases of humans and animals. Microorganisms transform antimicrobial quinolones (including fluoroquinolones) and the pharmacologically related naphthyridones, pyranoacridones, and cinnolones to a variety of metabolites. The biotransformation processes involve hydroxylation of methyl groups; hydroxylation of aliphatic and aromatic rings; oxidation of alcohols and amines; reduction of carboxyl groups; removal of methyl, carboxyl, fluoro, and cyano groups; addition of formyl, acetyl, nitrosyl, and cyclopentenone groups; and cleavage of aliphatic and aromatic rings. Most of these reactions greatly reduce or eliminate the antimicrobial activity of the quinolones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abd El-Ghany WA, Madian K (2011) Control of experimental colisepticaemia in broiler chickens using sarafloxacin. Life Sci J 8:318–328

    Google Scholar 

  2. Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2006) Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl Environ Microbiol 72:5790–5793

    Article  PubMed  CAS  Google Scholar 

  3. Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2007) Acetylation and nitrosation of ciprofloxacin by environmental strains of mycobacteria. Can J Microbiol 53:144–147

    Article  PubMed  CAS  Google Scholar 

  4. Andersson MI, MacGowan AP (2003) Development of the quinolones. J Antimicrob Chemother 51(Suppl S1):1–11

    Article  PubMed  CAS  Google Scholar 

  5. Andriole VT (2000) The quinolones: prospects. In: Andriole VT (ed) The quinolones, 3rd edn. Academic Press, San Diego, pp 477–495

    Chapter  Google Scholar 

  6. Appelbaum PC, Hunter PA (2000) The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents 16:5–15

    Article  PubMed  CAS  Google Scholar 

  7. Ball P (2000) Quinolone generations: natural history or natural selection? J Antimicrob Chemother 46(topic T1):17–24

    Article  PubMed  CAS  Google Scholar 

  8. Ball P (2000) The quinolones: history and overview. In: Andriole VT (ed) The quinolones, 3rd edn. Academic Press, San Diego, pp 1–31

    Chapter  Google Scholar 

  9. Basco LK, Mitaku S, Skaltsounis A-L, Ravelomanantsoa N, Tillequin F, Koch M, Le Bras J (1994) In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 38:1169–1171

    Article  PubMed  CAS  Google Scholar 

  10. Betts RE, Walters DE, Rosazza JP (1974) Microbial transformations of antitumor compounds. 1. Conversion of acronycine to 9-hydroxyacronycine by Cunninghamella echinulata. J Med Chem 17:599–602

    Article  PubMed  CAS  Google Scholar 

  11. Biagini GA, Fisher N, Shone AE et al (2012) Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria. Proc Nat Acad Sci USA 109:8298–8303

    Article  PubMed  CAS  Google Scholar 

  12. Boteva AA, Krasnykh OP (2009) The methods of synthesis, modification, and biological activity of 4-quinolones. Chem Heterocycl Comp 45:757–785

    Article  CAS  Google Scholar 

  13. Brighty KE, Gootz TD (2000) Chemistry and mechanism of action of the quinolone antibacterials. In: Andriole VT (ed) The quinolones, 3rd edn. Academic Press, San Diego, pp 33–97

    Chapter  Google Scholar 

  14. Burhenne J, Ludwig M, Spiteller M (1997) Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. Part II. Isolation and structural elucidation of polar photometabolites. Environ Sci Pollut Res 4:61–67

    Article  CAS  Google Scholar 

  15. Cattoir V, Nordmann P (2009) Plasmid-mediated quinolone resistance in Gram-negative bacterial species: an update. Curr Med Chem 16:1028–1046

    Article  PubMed  CAS  Google Scholar 

  16. Chen Y, Rosazza JPN, Reese CP, Chang H-Y, Nowakowski MA, Kiplinger JP (1997) Microbial models of soil metabolism: biotransformations of danofloxacin. J Ind Microbiol Biotechnol 19:378–384

    Article  PubMed  Google Scholar 

  17. Chen Y, Zhang H, Luo Y, Song J (2012) Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China. Environ Monit Assess 184:2205–2217

    Article  PubMed  CAS  Google Scholar 

  18. Dalhoff A, Bergan T (1998) Pharmacokinetics of fluoroquinolones in experimental animals. In: Kuhlmann J, Dalhoff A, Zeiler H-J (eds) Quinolone antibacterials. Springer, Berlin Heidelberg New York, pp 179–206

    Chapter  Google Scholar 

  19. Dalhoff A, Schmitz F-J (2003) In vitro antibacterial activity and pharmacodynamics of new quinolones. Eur J Clin Microbiol Infect Dis 22:203–221

    PubMed  CAS  Google Scholar 

  20. Divo AA, Sartorelli AC, Patton CL, Bia FJ (1988) Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 32:1182–1186

    Article  PubMed  CAS  Google Scholar 

  21. Drlica K, Hiasa H, Kerns R, Malik M, Mustaev A, Zhao X (2009) Quinolones: action and resistance updated. Curr Top Med Chem 9:981–998

    Article  PubMed  CAS  Google Scholar 

  22. Drlica K, Malik M (2003) Fluoroquinolones: action and resistance. Curr Top Med Chem 3:249–282

    Article  PubMed  CAS  Google Scholar 

  23. Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392

    PubMed  CAS  Google Scholar 

  24. Emami S, Shafiee A, Foroumadi A (2006) Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. Mini-Rev Med Chem 6:375–386

    Article  PubMed  CAS  Google Scholar 

  25. Engler M, Rüsing G, Sörgel F, Holzgrabe U (1998) Defluorinated sparfloxacin as a new photoproduct identified by liquid chromatography coupled with UV detection and tandem mass spectrometry. Antimicrob Agents Chemother 42:1151–1159

    PubMed  CAS  Google Scholar 

  26. Fujioka H, Nishiyama Y, Furukawa H, Kumada N (1989) In vitro and in vivo activities of atalaphillinine and related acridone alkaloids against rodent malaria. Antimicrob Agents Chemother 33:6–9

    Article  PubMed  CAS  Google Scholar 

  27. Giger W, Alder AC, Golet EM, Kohler H-PE, McArdell CS, Molnar E, Siegrist H, Suter MJ-F (2003) Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Chimia 57:485–491

    Article  CAS  Google Scholar 

  28. Grimaldo ER, Tupasi TE, Rivera AB, Quelapio MID, Cardaño RC, Derilo JO, Belen VA (2001) Increased resistance to ciprofloxacin and ofloxacin in multidrug-resistant Mycobacterium tuberculosis isolates from patients seen at a tertiary hospital in the Philippines. Int J Tuberc Lung Dis 5:546–550

    PubMed  CAS  Google Scholar 

  29. Hamilton PB, Rosi D, Peruzzotti GP, Nielson ED (1969) Microbiological metabolism of naphthyridines. Appl Microbiol 17:237–241

    PubMed  CAS  Google Scholar 

  30. Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Nat Acad Sci USA 88:10605–10608

    Article  PubMed  CAS  Google Scholar 

  31. Jones RN, Erwin ME (1998) In vitro susceptibility testing and quality control parameters for sarafloxacin (A-56620): a fluoroquinolone used for treatment and control of colibacillosis in poultry. Diagn Microbiol Infect Dis 32:55–64

    Article  PubMed  CAS  Google Scholar 

  32. Jung CM, Heinze TM, Strakosha R, Elkins CA, Sutherland JB (2009) Acetylation of fluoroquinolone antimicrobial agents by an Escherichia coli strain isolated from a municipal wastewater treatment plant. J Appl Microbiol 106:564–571

    Article  PubMed  CAS  Google Scholar 

  33. Karl W, Schneider J, Wetzstein H-G (2006) Outlines of an “exploding” network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum. Appl Microbiol Biotechnol 71:101–113

    Article  PubMed  CAS  Google Scholar 

  34. Keating GM, Scott LJ (2004) Moxifloxacin: a review of its use in the management of bacterial infections. Drugs 64:2347–2377

    Article  PubMed  CAS  Google Scholar 

  35. Kieslich K, Wieglepp H, Hoyer G-A, Rosenberg D (1973) Mikrobiologische Umwandlungen nichtsteroider Strukturen. V. Mikrobiologische Reaktionen von substituierten 1-Äthyl-4-oxo-1,4-dihydrochinolin-3-carbonsäuren. Chem Ber 106:2636–2642

    Article  CAS  Google Scholar 

  36. Kim D-W, Heinze TM, Kim B-S, Schnackenberg LK, Woodling KA, Sutherland JB (2011) Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant. Appl Environ Microbiol 77:6100–6108

    Article  PubMed  CAS  Google Scholar 

  37. Kim Y-H, Cerniglia CE (2009) An overview of the fate and effects of antimicrobials used in aquaculture. In: Henderson KL, Coats JR (eds) Veterinary pharmaceuticals in the environment (ACS symposium series 1018). Oxford University Press, New York, pp 105–120

    Google Scholar 

  38. Kloskowski T, Gurtowska N, Drewa T (2010) Does ciprofloxacin have an obverse and a reverse? Pulm Pharmacol Ther 23:373–375

    Article  PubMed  CAS  Google Scholar 

  39. Koenigs JW (1974) Hydrogen peroxide and iron: a proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber 6:66–80

    Google Scholar 

  40. Koga H, Itoh A, Murayama S, Suzue S, Irikura T (1980) Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem 23:1358–1363

    Article  PubMed  CAS  Google Scholar 

  41. Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect 9:1203–1214

    Article  PubMed  Google Scholar 

  42. Lehman LR, Stewart JD (2001) Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centers. Curr Org Chem 5:439–470

    Article  CAS  Google Scholar 

  43. Lesher GY, Froelich EJ, Gruett MD, Bailey JH, Brundage RP (1962) 1,8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J Med Chem 5:1063–1065

    Article  CAS  Google Scholar 

  44. Leung HW, Minh TB, Murphy MB, Lam JCW, So MK, Martin M, Lam PKS, Richardson BJ (2012) Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, south China. Environ Int 42(S1):1–9

    Article  PubMed  CAS  Google Scholar 

  45. Lewis G, Juhasz A, Smith E (2012) Environmental metabolites of fluoroquinolones: synthesis, fractionation and toxicological assessment of some biologically active metabolites of ciprofloxacin. Environ Sci Pollut Res 19:2697–2707

    Google Scholar 

  46. Mahmoudi N, Ciceron L, Franetich J-F, Farhati K, Silvie O, Eling W, Sauerwein R, Danis M, Mazier D, Derouin F (2003) In vitro activities of 25 quinolones and fluoroquinolones against liver and blood stage Plasmodium spp. Antimicrob Agents Chemother 47:2636–2639

    Article  PubMed  CAS  Google Scholar 

  47. Marengo JR, Kok RA, Burrows LA, Velagaleti RR, Stamm JM (2001) Biodegradation of 14C-sarafloxacin hydrochloride, a fluoroquinolone antimicrobial by Phanerochaete chrysosporium. J Sci Ind Res 60:121–130

    CAS  Google Scholar 

  48. Marengo JR, Kok RA, O’Brien K, Velagaleti RR, Stamm JM (1997) Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16:462–471

    CAS  Google Scholar 

  49. Martens R, Wetzstein HG, Zadrazil F, Capelari M, Hoffmann P, Schmeer N (1996) Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl Environ Microbiol 62:4206–4209

    PubMed  CAS  Google Scholar 

  50. Martinsen B, Horsberg TE (1995) Comparative single-dose pharmacokinetics of four quinolones, oxolinic acid, flumequine, sarafloxacin, and enrofloxacin, in Atlantic salmon (Salmo salar) held in seawater at 10 °C. Antimicrob Agents Chemother 39:1059–1064

    Article  PubMed  CAS  Google Scholar 

  51. McClean KL, Hitchman D, Shafran SD (1992) Norfloxacin is inferior to chloroquine for falciparum malaria in northwestern Zambia: a comparative clinical trial. J Infect Dis 165:904–907

    Article  PubMed  CAS  Google Scholar 

  52. McGuirk PR, Jefson MR, Mann DD et al (1992) Synthesis and structure-activity relationships of 7-diazabicycloalkylquinolones, including danofloxacin, a new quinolone antibacterial agent for veterinary medicine. J Med Chem 35:611–620

    Article  PubMed  CAS  Google Scholar 

  53. Meunier D, Acar J-F, Martel J-L, Kroemer S, Valle M (2004) A seven-year survey of susceptibility to marbofloxacin of pathogenic strains isolated from pets. Int J Antimicrob Agents 24:592–598

    Article  PubMed  CAS  Google Scholar 

  54. Miller IM, Wittreich JM, Cook T, Vogel R (1992) The safety and efficacy of topical norfloxacin compared with chloramphenicol for the treatment of external ocular bacterial infections. Eye 6:111–114

    Article  PubMed  Google Scholar 

  55. Mitchell MA (2006) Enrofloxacin. J Exotic Pet Med 15:66–69

    Article  Google Scholar 

  56. Mitscher LA, Devasthale P, Zavod R (1993) Structure-activity relationships. In: Hooper DC, Wolfson JS (eds) Quinolone antimicrobial agents, 2nd edn. American Society for Microbiology, Washington, DC, pp 3–51

    Google Scholar 

  57. Mugnaini C, Pasquini S, Corelli F (2009) The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr Med Chem 16:1746–1767

    Article  PubMed  CAS  Google Scholar 

  58. Nguyen QC, Nguyen TT, Yougnia R, Gaslonde T, Dufat H, Michel S, Tillequin F (2009) Acronycine derivatives: a promising series of anti-cancer agents. Anti-Cancer Agents Med Chem 9:804–815

    Article  CAS  Google Scholar 

  59. Oliphant CM, Green GM (2002) Quinolones: a comprehensive review. Am Fam Physician 65:455–464

    PubMed  Google Scholar 

  60. Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (1999) Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135

    Article  PubMed  CAS  Google Scholar 

  61. Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667

    Article  PubMed  CAS  Google Scholar 

  62. Parshikov IA, Freeman JP, Lay JO, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144

    Article  PubMed  CAS  Google Scholar 

  63. Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477

    Article  PubMed  CAS  Google Scholar 

  64. Parshikov IA, Moody JD, Freeman JP, Lay JO, Williams AJ, Heinze TM, Sutherland JB (2002) Formation of conjugates from ciprofloxacin and norfloxacin in cultures of Trichoderma viride. Mycologia 94:1–5

    Article  PubMed  CAS  Google Scholar 

  65. Parshikov IA, Moody JD, Heinze TM, Freeman JP, Williams AJ, Sutherland JB (2002) Transformation of cinoxacin by Beauveria bassiana. FEMS Microbiol Lett 214:133–136

    Article  PubMed  CAS  Google Scholar 

  66. Pauliukonis LT, Musson DG, Bayne WF (1984) Quantitation of norfloxacin, a new antibacterial agent in human plasma and urine by ion-pair reverse-phase chromatography. J Pharm Sci 73:99–102

    Article  PubMed  CAS  Google Scholar 

  67. Petersen U (2006) Quinolone antibiotics: the development of moxifloxacin. In: Fischer J, Ganellin CR (eds) Analogue-based drug discovery. Wiley-VCH, Weinheim, pp 315–370

    Chapter  Google Scholar 

  68. Prieto A, Möder M, Rodil R, Adrian L, Marco-Urrea E (2011) Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Biores Technol 102:10987–10995

    Article  CAS  Google Scholar 

  69. Rigos G, Troisi GM (2005) Antibacterial agents in Mediterranean finfish farming: a synopsis of drug pharmacokinetics in important euryhaline fish species and possible environmental implications. Rev Fish Biol Fish 15:53–73

    Article  Google Scholar 

  70. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88

    Article  PubMed  CAS  Google Scholar 

  71. Sabbour MS, El Bokl MA, Osman LM (1984) Experiences on the efficacy and safety of nalidixic acid, oxolinic acid, cinoxacin and norfloxacin in the treatment of urinary tract infections (UTI). Infection 12:377–380

    Article  PubMed  CAS  Google Scholar 

  72. Sappal R, Chaudhary RK, Sandhu HS, Sidhu PK (2009) Pharmacokinetics, urinary excretion and plasma protein binding of danofloxacin following intravenous administration in buffalo calves (Bubalus bubalis). Vet Res Commun 33:659–667

    Article  PubMed  Google Scholar 

  73. Sarma PS (1989) Norfloxacin: a new drug in the treatment of falciparum malaria. Ann Intern Med 111:336–337

    PubMed  CAS  Google Scholar 

  74. Schlosser D, Fahr K, Karl W, Wetzstein H-G (2000) Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum. Appl Environ Microbiol 66:2479–2483

    Article  PubMed  CAS  Google Scholar 

  75. Sellyei B, Varga Z, Szentesi-Samu K, Kaszanyitzky É, Magyar T (2009) Antimicrobial susceptibility of Pasteurella multocida isolated from swine and poultry. Acta Vet Hung 57:357–367

    Article  PubMed  CAS  Google Scholar 

  76. Sharma PC, Jain A, Jain S, Pahwa R, Yar MS (2010) Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J Enz Inhib Med Chem 25:577–589

    Article  CAS  Google Scholar 

  77. Silley P, Bernd S, Greife HA, Pridmore A (2007) Comparative activity of pradofloxacin against anaerobic bacteria isolated from dogs and cats. J Antimicrob Chemother 60:999–1003

    Article  PubMed  CAS  Google Scholar 

  78. Sisca TS, Heel RC, Romankiewicz JA (1983) Cinoxacin—a review of its pharmacological properties and therapeutic efficacy in the treatment of urinary tract infections. Drugs 25:544–569

    Article  PubMed  CAS  Google Scholar 

  79. Sturini M, Speltini A, Maraschi F, Profumo A, Pretali L, Fasani E, Albini A (2010) Photochemical degradation of marbofloxacin and enrofloxacin in natural waters. Environ Sci Technol 44:4564–4569

    Article  PubMed  CAS  Google Scholar 

  80. Sturini M, Speltini A, Maraschi F, Profumo A, Pretali L, Fasani E, Albini A (2012) Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials marbofloxacin and enrofloxacin. Chemosphere 86:130–137

    Article  PubMed  CAS  Google Scholar 

  81. Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR (1977) Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Nat Acad Sci USA 74:4767–4771

    Article  PubMed  CAS  Google Scholar 

  82. Sukul P, Spiteller M (2007) Fluoroquinolone antibiotics in the environment. Rev Environ Contam Toxicol 191:131–162

    Article  PubMed  CAS  Google Scholar 

  83. Tiefenbacher E-M, Haen E, Przybilla B, Kurz H (1994) Photodegradation of some quinolones used as antimicrobial therapeutics. J Pharm Sci 83:463–467

    Article  PubMed  CAS  Google Scholar 

  84. Watt G, Shanks GD, Edstein MD, Pavanand K, Webster HK, Wechgritaya S (1991) Ciprofloxacin treatment of drug-resistant falciparum malaria. J Infect Dis 164:602–604

    Article  PubMed  CAS  Google Scholar 

  85. Wetzstein H-G (2001) Chinolone in der Umwelt: biologische Abbaubarkeit der Gyrasehemmer. Pharm Unserer Zeit 30:450–457

    Article  PubMed  CAS  Google Scholar 

  86. Wetzstein H-G (2005) Comparative mutant prevention concentrations of pradofloxacin and other veterinary fluoroquinolones indicate differing potentials in preventing selection of resistance. Antimicrob Agents Chemother 49:4166–4173

    Article  PubMed  CAS  Google Scholar 

  87. Wetzstein H-G, Dalhoff A, Karl W (1997) BAY 12-8039, a new 8-methoxyquinolone, is degraded by the brown rot fungus Gloeophyllum striatum. Abstracts of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy, Toronto, Canada (p 172, abstract F-157)

  88. Wetzstein H-G, Hallenbach W (2011) Tuning of antibacterial activity of a cyclopropyl fluoroquinolone by variation of the substituent at position C-8. J Antimicrob Chemother 66:2801–2808

    Article  PubMed  CAS  Google Scholar 

  89. Wetzstein H-G, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281

    PubMed  CAS  Google Scholar 

  90. Wetzstein H-G, Schneider J, Karl W (2006) Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl Microbiol Biotechnol 71:90–100

    Article  PubMed  CAS  Google Scholar 

  91. Wetzstein H-G, Schneider J, Karl W (2009) Comparative biotransformation of fluoroquinolone antibiotics in matrices of agricultural relevance. In: Henderson KL, Coats JR (eds) Veterinary pharmaceuticals in the environment (ACS Symposium Series 1018). Oxford University Press, New York, pp 67–91

    Google Scholar 

  92. Wetzstein H-G, Schneider J, Karl W (2012) Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic. AMB Express 2(3):1–7

    Google Scholar 

  93. Wetzstein H-G, Stadler M, Tichy H-V, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563

    PubMed  CAS  Google Scholar 

  94. Williams AJ, Deck J, Freeman JP, Chiarelli MP, Adjei MD, Heinze TM, Sutherland JB (2007) Biotransformation of flumequine by the fungus Cunninghamella elegans. Chemosphere 67:240–243

    Article  PubMed  CAS  Google Scholar 

  95. Williams AJ, Parshikov IA, Moody JD, Heinze TM, Sutherland JB (2004) Fungal transformation of an antimicrobial fluoroquinolone drug during growth on poultry litter materials. J Appl Poult Res 13:235–240

    CAS  Google Scholar 

  96. Zeiler H-J, Petersen U, Gau W, Ploschke HJ (1987) Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneim-Forsch 37:131–134

    CAS  Google Scholar 

  97. Zhang T, Li B (2011) Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit Rev Environ Sci Technol 41:951–998

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. C. E. Cerniglia and Dr. H.-G. Wetzstein for valuable and insightful comments on this manuscript. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Sutherland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parshikov, I.A., Sutherland, J.B. Microbial transformations of antimicrobial quinolones and related drugs. J Ind Microbiol Biotechnol 39, 1731–1740 (2012). https://doi.org/10.1007/s10295-012-1194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1194-x

Keywords

Navigation