Skip to main content
Log in

Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

This work describes the production of (R,R)-2,3-butanediol in Escherichia coli using glycerol by metabolic engineering approaches. The introduction of a synthetic pathway converting pyruvate to (R,R)-2,3-butanediol into wild-type E. coli strain BW25113 led to the production of (R,R)-2,3-butanediol at a titer of 3.54 g/l and a yield of 0.131 g product/g glycerol (26.7 % of theoretical maximum) with acetate (around 3.00 g/l) as the dominant by-product. We therefore evaluated the impacts of deleting the genes ackA or/and poxB that are responsible for the major by-product, acetate. This increased production of (R,R)-2,3-butanediol to 9.54 g/l with a yield of 0.333 g product/g glycerol (68.0 % of theoretical maximum) in shake flask studies. The utilization of low-priced crude glycerol to produce value-added chemicals is of great significance to the economic viability of the biodiesel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451(7174):86–89. doi:10.1038/nature06450

    Article  PubMed  CAS  Google Scholar 

  2. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi:10.1038/msb4100050

    PubMed  Google Scholar 

  3. Blankschien MD, Clomburg JM, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12(5):409–419. doi:10.1016/j.ymben.2010.06.002

    Article  Google Scholar 

  4. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol–current state and prospects. Biotechnol Adv 27(6):715–725. doi:10.1016/j.biotechadv.2009.05.002

    Article  PubMed  CAS  Google Scholar 

  5. Clomburg JM, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 108(4):867–879. doi:10.1002/bit.22993

    Article  PubMed  CAS  Google Scholar 

  6. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    Article  PubMed  CAS  Google Scholar 

  7. De Mas C, Jansen NB, Tsao GT (1988) Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol Bioeng 31(4):366–377. doi:10.1002/bit.260310413

    Article  PubMed  Google Scholar 

  8. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355–359. doi:10.1038/nature10333

    Article  PubMed  CAS  Google Scholar 

  9. Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94(5):821–829. doi:10.1002/bit.21025

    Article  PubMed  CAS  Google Scholar 

  10. Durnin G, Clomburg J, Yeates Z, Alvarez PJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103(1):148–161. doi:10.1002/bit.22246

    Article  PubMed  CAS  Google Scholar 

  11. Eiteman MA, Chastain MJ (1997) Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta 338(1–2):69–75

    Article  CAS  Google Scholar 

  12. Gaspar P, Neves AR, Gasson MJ, Shearman CA, Santos H (2011) High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering NAD+ cofactor recycling. Appl Environ Microbiol. doi:10.1128/AEM.05544-11

    Google Scholar 

  13. Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7(5–6):329–336. doi:10.1016/j.ymben.2005.06.001

    Article  PubMed  CAS  Google Scholar 

  14. Huo YX, Cho KM, Rivera JG, Monte E, Shen CR, Yan Y, Liao JC (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29(4):346–351. doi:10.1038/nbt.1789

    Article  PubMed  CAS  Google Scholar 

  15. Jain R, Yan Y (2011) Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb Cell Fact 10:97. doi:10.1186/1475-2859-10-97

    Article  PubMed  CAS  Google Scholar 

  16. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29(3):351–364. doi:10.1016/j.biotechadv.2011.01.007

    Article  PubMed  CAS  Google Scholar 

  17. Khanna S, Goyal A, Moholkar VS (2011) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 1–28. doi:10.3109/07388551.2011.604839

  18. Kopke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475. doi:10.1128/AEM.00355-11

    Article  PubMed  CAS  Google Scholar 

  19. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25(6):1203–1210

    Article  PubMed  CAS  Google Scholar 

  20. Mazumdar S, Clomburg JM, Gonzalez R (2010) Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol. Appl Environ Microbiol 76(13):4327–4336. doi:10.1128/AEM.00664-10

    Article  PubMed  CAS  Google Scholar 

  21. Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74(4):1124–1135. doi:10.1128/AEM.02192-07

    Article  PubMed  CAS  Google Scholar 

  22. Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 87(3):943–949. doi:10.1007/s00253-010-2545-z

    Article  PubMed  CAS  Google Scholar 

  23. Rathnasingh C, Raj SM, Jo JE, Park S (2009) Development and evaluation of efficient recombinant Escherichia coli strains for the production of 3-hydroxypropionic acid from glycerol. Biotechnol Bioeng 104(4):729–739. doi:10.1002/bit.22429

    PubMed  CAS  Google Scholar 

  24. Sandoval NR, Mills TY, Zhang M, Gill RT (2010) Elucidating acetate tolerance in E. coli using a genome-wide approach. Metab Eng 13(2):214–224. doi:10.1016/j.ymben.2010.12.001

    Article  PubMed  Google Scholar 

  25. Shams Yazdani S, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10(6):340–351. doi:10.1016/j.ymben.2008.08.005

    Article  PubMed  Google Scholar 

  26. Sweet G, Gandor C, Voegele R, Wittekindt N, Beuerle J, Truniger V, Lin EC, Boos W (1990) Glycerol facilitator of Escherichia coli: cloning of glpF and identification of the glpF product. J Bacteriol 172(1):424–430

    PubMed  CAS  Google Scholar 

  27. Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55(1):10–18

    Article  PubMed  CAS  Google Scholar 

  28. Thomason LC, Costantino N, Court DL (2007) E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol 79:1.17.1–1.17.8. doi:10.1002/0471142727.mb0117s79

  29. Yan Y, Chemler J, Huang L, Martens S, Koffas MA (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Appl Environ Microbiol 71(7):3617–3623. doi:10.1128/AEM.71.7.3617-3623.2005

    Article  PubMed  CAS  Google Scholar 

  30. Yan Y, Kohli A, Koffas MA (2005) Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Appl Environ Microbiol 71(9):5610–5613. doi:10.1128/AEM.71.9.5610-5613.2005

    Article  PubMed  CAS  Google Scholar 

  31. Yan Y, Lee CC, Liao JC (2009) Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases. Org Biomol Chem 7(19):3914–3917. doi:10.1039/b913501d

    Article  PubMed  CAS  Google Scholar 

  32. Yan Y, Li Z, Koffas MA (2008) High-yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnol Bioeng 100(1):126–140. doi:10.1002/bit.21721

    Article  PubMed  CAS  Google Scholar 

  33. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18(3):213–219. doi:10.1016/j.copbio.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  34. Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22(6):749–757. doi:10.1016/j.copbio.2011.05.005

    Article  PubMed  CAS  Google Scholar 

  35. Zhu Y, Eiteman MA, Altman R, Altman E (2008) High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain. Appl Environ Microbiol 74(21):6649–6655. doi:10.1128/AEM.01610-08

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Science Foundation of China (20976009, 21176018) and the National High-tech Research and Development Program of China (2009AA02Z202). Xiaolin Shen is supported financially by the Key Laboratory of Bioprocess of Beijing at Beijing University of Chemical Technology. This work was also partially supported by start-up funds from the Faculty of Engineering, University of Georgia, Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Lin, Y., Jain, R. et al. Inhibition of acetate accumulation leads to enhanced production of (R,R)-2,3-butanediol from glycerol in Escherichia coli . J Ind Microbiol Biotechnol 39, 1725–1729 (2012). https://doi.org/10.1007/s10295-012-1171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1171-4

Keywords

Navigation