Skip to main content
Log in

Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production

  • Genetics and Molecular Biology of Industrial Organisms
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Used for millennia to produce beverages and food, Saccharomyces cerevisiae also became a workhorse in the production of biofuels, most notably bioethanol. Yeast strains have acquired distinct characteristics that are the result of evolutionary adaptation to the stresses of industrial ethanol production. JP1 is a dominant industrial S. cerevisiae strain isolated from a sugarcane mill and is becoming increasingly popular for bioethanol production in Brazil. In this work, we carried out the genetic characterization of this strain and developed a set of tools to permit its genetic manipulation. Using flow cytometry, mating type, and sporulation analysis, we verified that JP1 is diploid and homothallic. Vectors with dominant selective markers for G418, hygromycin B, zeocin, and ρ-fluoro-dl-phenylalanine were used to successfully transform JP1 cells. Also, an auxotrophic ura3 mutant strain of JP1 was created by gene disruption using integration cassettes with dominant markers flanked by loxP sites. Marker excision was accomplished by the Cre/loxP system. The resulting auxotrophic strain was successfully transformed with an episomal vector that allowed green fluorescent protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391. doi:10.1007/s10295-008-0327-8

    Article  PubMed  CAS  Google Scholar 

  2. Brosnan MP, Donnelly D, James TC, Bond U (2000) The stress response is repressed during fermentation in brewery strains of yeast. J Appl Microbiol 88(5):746–755. doi:10.1046/j.1365-2672.2000.01006.x

    Article  PubMed  CAS  Google Scholar 

  3. Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91(5):1267–1275. doi:10.1007/s00253-011-3437-6

    Article  PubMed  CAS  Google Scholar 

  4. da Silva Filho EA, de Melo HF, Antunes DF, dos Santos SK, do Monte Resende A, Simoes DA, de Morais MA Jr (2005) Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation. J Ind Microbiol Biotechnol 32(10):481–486. doi:10.1007/s10295-005-0027-6

    Article  PubMed  Google Scholar 

  5. Almeida JR, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF (2011) Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 6(3):286–299. doi:10.1002/biot.201000301

    Article  PubMed  CAS  Google Scholar 

  6. Borneman AR, Desany BA, Riches D, Affourtit JP, Forgan AH, Pretorius IS, Egholm M, Chambers PJ (2011) Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genet 7(2):e1001287. doi:10.1371/journal.pgen.1001287

    Article  PubMed  CAS  Google Scholar 

  7. Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1(1):66–71. doi:10.1371/journal.pgen.0010005

    Article  PubMed  CAS  Google Scholar 

  8. Wheals AE, Basso LC, Alves DM, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17(12):482–487. doi:10.1016/S0167-7799(99)01384-0

    Article  PubMed  CAS  Google Scholar 

  9. Akada R (2002) Genetically modified industrial yeast ready for application. J Biosci Bioeng 94(6):536–544. doi:10.1016S1389-1723(02)80192-X

    PubMed  CAS  Google Scholar 

  10. Burke D, Dawson D, Stearns T (2000) Methods in yeast genetics: a cold spring harbor laboratory course manual, 2000 edn. Burke, D, New York

    Google Scholar 

  11. Sherman F, Fink G, Hicks J (1996) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  12. Jacques N, Sacerdot C, Derkaoui M, Dujon B, Ozier-Kalogeropoulos O, Casaregola S (2010) Population polymorphism of nuclear mitochondrial DNA insertions reveals widespread diploidy associated with loss of heterozygosity in Debaryomyces hansenii. Eukaryot Cell 9(3):449–459. doi:10.1128/EC.00263-09

    Article  PubMed  CAS  Google Scholar 

  13. Huxley C, Green ED, Dunham I (1990) Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 6(8):236. doi:10.1016/0168-9525(90)90190-H

    PubMed  CAS  Google Scholar 

  14. Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21(1):83–84

    Article  PubMed  CAS  Google Scholar 

  15. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  16. Hansen J, Felding T, Johannesen PF, Piskur J, Christensen CL, Olesen K (2003) Further development of the cassette-based pYC plasmid system by incorporation of the dominant hph, nat and AUR1-C gene markers and the lacZ reporter system. FEMS Yeast Res 4(3):323–327. doi:10.1016/S1567-1356(03)00178-8

    Article  PubMed  CAS  Google Scholar 

  17. Falcon AA, Aris JP (2003) Plasmid accumulation reduces life span in Saccharomyces cerevisiae. J Biol Chem 278(43):41607–41617. doi:10.1074/jbc.M307025200

    Article  PubMed  CAS  Google Scholar 

  18. Güldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519–2524. doi:10.1093/nar/24.13.2519

    Article  PubMed  Google Scholar 

  19. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. doi:10.1038/nprot.2007.13

    Article  PubMed  CAS  Google Scholar 

  20. Carter Z, Delneri D (2010) New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 27(9):765–775. doi:10.1002/yea.1774

    Article  PubMed  CAS  Google Scholar 

  21. Dickinson JR (2004) Life cycle and morphogenesis. In: Dickinson JR, Schweizer M (eds) The metabolism and molecular physiology of Saccharomyces cerevisiae. CRC Press, Florida, pp 1–19

    Google Scholar 

  22. Argueso JL, Carazzolle MF, Mieczkowski PA, Duarte FM, Netto OV, Missawa SK, Galzerani F, Costa GG, Vidal RO, Noronha MF, Dominska M, Andrietta MG, Andrietta SR, Cunha AF, Gomes LH, Tavares FC, Alcarde AR, Dietrich FS, McCusker JH, Petes TD, Pereira GA (2009) Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Res 19(12):2258–2270. doi:10.1101/gr.091777.109

    Article  PubMed  CAS  Google Scholar 

  23. Lucena BT, Silva-Filho EA, Coimbra MR, Morais JO, Simoes DA, Morais MA Jr (2007) Chromosome instability in industrial strains of Saccharomyces cerevisiae batch cultivated under laboratory conditions. Genet Mol Res 6(4):1072–1084

    PubMed  CAS  Google Scholar 

  24. Gerstein AC, Chun HJ, Grant A, Otto SP (2006) Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genet 2(9):e145. doi:10.1371/journal.pgen.0020145

    Article  PubMed  Google Scholar 

  25. Haber JE (1998) Mating-type gene switching in Saccharomyces cerevisiae. Annu Rev Genet 32:561–599. doi:10.1146/annurev.genet.32.1.561

    Article  PubMed  CAS  Google Scholar 

  26. Herskowitz I (1988) Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev 52(4):536–553

    PubMed  CAS  Google Scholar 

  27. Bilinski CA, Casey GP (1989) Developments in sporulation and breeding of brewer’s yeast. Yeast 5(6):429–438. doi:10.1002/yea.320050603

    Article  CAS  Google Scholar 

  28. Katz Ezov T, Chang SL, Frenkel Z, Segre AV, Bahalul M, Murray AW, Leu JY, Korol A, Kashi Y (2010) Heterothallism in Saccharomyces cerevisiae isolates from nature: effect of HO locus on the mode of reproduction. Mol Ecol 19(1):121–131. doi:10.1111/j.1365-294X.2009.04436.x

    Article  PubMed  Google Scholar 

  29. Tamai Y, Tanaka K, Kaneko Y, Harashima S (2001) HO gene polymorphism in Saccharomyces industrial yeasts and application of novel HO genes to convert homothallism to heterothallism in combination with the mating-type detection cassette. Appl Microbiol Biotechnol 55(3):333–340. doi:10.1007/s002530000490

    Article  PubMed  CAS  Google Scholar 

  30. Reynolds AE, Murray AW, Szostak JW (1987) Roles of the 2 microns gene products in stable maintenance of the 2 microns plasmid of Saccharomyces cerevisiae. Mol Cell Biol 7(10):3566–3573. doi:10.1128/MCB.7.10.3566

    PubMed  CAS  Google Scholar 

  31. Fukuda K, Watanabe M, Asano K (1990) Altered regulation of aromatic amino acid biosynthesis in β-phenylethyl-alcohol-overproducing mutant of sake yeast Saccharomyces cerevisiae. Agric Biol Chem 54(12):3151–3156

    Article  CAS  Google Scholar 

  32. Cebollero E, Gonzalez R (2004) Comparison of two alternative dominant selectable markers for wine yeast transformation. Appl Environ Microbiol 70(12):7018–7023. doi:10.1128/AEM.70.12.7018-7023.2004

    Article  PubMed  CAS  Google Scholar 

  33. Hashimoto S, Ogura M, Aritomi K, Hoshida H, Nishizawa Y, Akada R (2005) Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis. Appl Environ Microbiol 71(1):312–319. doi:10.1128/AEM.71.1.312-319.2005

    Article  PubMed  CAS  Google Scholar 

  34. Ugolini S, Tosato V, Bruschi CV (2002) Selective fitness of four episomal shuttle-vectors carrying HIS3, LEU2, TRP1, and URA3 selectable markers in Saccharomyces cerevisiae. Plasmid 47(2):94–107. doi:10.1006/plas.2001.1557

    Article  PubMed  CAS  Google Scholar 

  35. Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345–346. doi:10.1007/BF00330984

    Article  PubMed  CAS  Google Scholar 

  36. Hiraoka M, Watanabe K, Umezu K, Maki H (2000) Spontaneous loss of heterozygosity in diploid Saccharomyces cerevisiae cells. Genetics 156(4):1531–1548

    PubMed  CAS  Google Scholar 

  37. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7(6):2087–2096. doi:10.1128/MCB.7.6.2087

    PubMed  CAS  Google Scholar 

  38. Wach A (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12(3):259–265. doi:10.1002/(SICI)1097-0061(19960315)12:3<259:AID-YEA901>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  39. Da Silva NA, Bailey JE (1991) Influence of plasmid origin and promoter strength in fermentations of recombinant yeast. Biotechnol Bioeng 37(4):318–324. doi:10.1002/bit.260370405

    Article  PubMed  Google Scholar 

  40. Klinner U, Schafer B (2004) Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev 28(2):201–223. doi:10.1016/j.femsre.2003.10.002

    Article  PubMed  CAS  Google Scholar 

  41. Basso LC, de Amorim HV, de Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1163. doi:10.1111/j.1567-1364.2008.00428.x

    Google Scholar 

  42. van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin ML, Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL, Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov J, Pronk JT (2000) An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb Technol 26(9–10):706–714. doi:10.1016/S0141-0229(00)00162-9

  43. Leberer E, Dignard D, Harcus D, Thomas DY, Whiteway M (1992) The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J 11(13):4815–4824

    Google Scholar 

  44. Mortimer RK, Johnston JR (1986) Genealogy of principal strains of the yeast genetic stock center. Genetics 113(1):35–43

    Google Scholar 

  45. Olesen K, Franke Johannesen P, Hoffmann L, Bech Sorensen S, Gjermansen C, Hansen J (2000) The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection. Yeast 16(11):1035–1043. doi:10.1002/1097-0061(200008)16:11&lt;1035::AID-YEA606&gt;3.0.CO;2-P

    Google Scholar 

  46. Niedenthal RK, Riles L, Johnston M, Hegemann JH (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12(8):773–786. doi:10.1002/(SICI)1097-0061(19960630)12:8&lt;773::AID-YEA972&gt;3.0.CO;2-L

    Google Scholar 

Download references

Acknowledgments

The research was supported by Petrobras, CNPq and Capes (Brazil). The authors thank Dr. Olssen, Dr. Falcon, and Dr. González for donation of plasmid vectors. We are in indebted to Dr. Marcos Morais (Universidade Federal de Pernambuco) for critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Araripe Gonçalves Torres.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 118 kb)

Supplementary material 2 (DOC 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, V.C.B., Nicola, A.M., de Souza Oliveira Neto, O. et al. Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production. J Ind Microbiol Biotechnol 39, 1673–1683 (2012). https://doi.org/10.1007/s10295-012-1170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1170-5

Keywords

Navigation