Skip to main content
Log in

Encapsulation of Pseudomonas sp. ADP cells in electrospun microtubes for atrazine bioremediation

  • Biotechnology Methods
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Electrospun hollow polymeric microfibers (microtubes) were evaluated as an encapsulation method for the atrazine degrading bacterium Pseudomonas sp. ADP. Pseudomonas sp. ADP cells were successfully incorporated in a formulation containing a core solution of polyethylene oxide dissolved in water and spun with an outer shell solution made of polycaprolactone and polyethylene glycol dissolved in a chloroform and dimethylformamide. The resulting microtubes, collected as mats, were partially collapsed with a ribbon-like structure. Following encapsulation, the atrazine degradation rate was low (0.03 ± 0.01 mg atrazine/h/g fiber) indicating that the electrospinning process negatively affected cell activity. Atrazine degradation was restored to 0.5 ± 0.1 mg atrazine/h/g fiber by subjecting the microtubes to a period of growth. After 3 and 7 days growth periods, encapsulated cells were able to remove 20.6 ± 3 and 47.6 ± 5.9 mg atrazine/g mat, respectively, in successive batches under non-growth conditions (with no additional electron donor) until atrazine was detected in the medium. The loss of atrazine degrading capacity was regained following an additional cell-growth period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43:597–603

    Article  PubMed  CAS  Google Scholar 

  2. Park J, Feng Y, Ji P, Voice TC, Boyd SA (2003) Assessment of bioavailability of soil-sorbed atrazine. Appl Environ Microbiol 69:3288–3298

    Article  PubMed  CAS  Google Scholar 

  3. Smith D, Alvey S, Corwley DE (2005) Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. FEMS Microbiol Ecol 53:265–273

    Article  PubMed  CAS  Google Scholar 

  4. Topp E (2001) A comparison of three atrazine-degrading bacteria for soil bioremediation. Biol Fertil Soils 33:529–534

    Article  CAS  Google Scholar 

  5. Katz I, Dosoretz CG, Mandelbaum RT, Green M (2001) Atrazine degradation under denitrifying conditions in continuous culture of Pseudomonas ADP. Water Res 35:3272–3275

    Article  PubMed  CAS  Google Scholar 

  6. Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61:1451–1457

    PubMed  CAS  Google Scholar 

  7. Wyss A, Boucher J, Montero A, Marison I (2006) Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzyme Microb Tech 40:25–31

    Article  CAS  Google Scholar 

  8. Herzberg M, Dosoretz CG, Tarre S, Green M (2003) Patchy biofilm coverage can explain the potential advantage of BGAC reactors. Environ Sci Technol 37:4274–4280

    Article  PubMed  CAS  Google Scholar 

  9. Silva E, Fialho AM, Correia ISA, Burns RG, Shaw LJ (2004) Combined bioaugmentation and biostimulation to clean up soil contaminated with high concentrations of atrazine. Environ Sci Technol 38:632–637

    Article  PubMed  CAS  Google Scholar 

  10. Macias-Flores A, Tafoya-Garnica A, Ruiz-Ordaz N, Salmeron-Alcocer A, Juarez-Ramirez C, Ahuatzi-Chacon D, Mondragon-Parada ME, Galindez-Mayer J (2009) Atrazine biodegradation by a bacterial community immobilized in two types of packed-bed biofilm reactors. World J Microbiol Biotechnol 25:2195–2204

    Article  CAS  Google Scholar 

  11. Reitti-Shati M, Ronen D, Mandelbaum RT (1996) Atrazine degradation by Pseudomonas sp. strain ADP entrapped in sol gel glass. J Sol-Gel Sci Technol 7:77–79

    Article  Google Scholar 

  12. Siripattanakul S, Wirojanagud W, McEvoy J, Khan E (2008) Effect of cell-to-matrix ratio in polyvinyl alcohol immobilized pure and mixed cultures on atrazine degradation. Water Air Soil Pollut Focus 8:257–266

    Article  CAS  Google Scholar 

  13. Vancov T, Jury K, Van Zwieten L (2005) Atrazine degradation by encapsulated Rhodococcus erythropolis NI86/21. J Appl Microbiol 99:767–775

    Article  PubMed  CAS  Google Scholar 

  14. Dror Y, Kuhn J, Avrahami R, Zussman E (2008) Encapsulation of enzymes in biodegradable tubular structures. Macromolecules 41:4187–4192

    Article  CAS  Google Scholar 

  15. Klein S, Kuhn J, Avrahami R, Tarre S, Beliavski M, Green M, Zussman E (2009) Encapsulation of bacterial cells in electrospun microtubes. Biomacromolecules 10:1751–1756

    Article  PubMed  CAS  Google Scholar 

  16. Mandelbaum RT, Wackett LP, Allan DL (1993) Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Appl Environ Microbiol 59:1695–1701

    PubMed  CAS  Google Scholar 

  17. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology 12:384–390

    Article  Google Scholar 

  18. Arinstein A, Zussman E (2007) Post processes in tubular electrospun nanofibers. Phys Rev E 76:056303

    Article  CAS  Google Scholar 

  19. Arinstein A, Avrahami R, Zussman E (2009) Buckling behavior of electrospun microtubes: a simple theoretical model and experimental observations. J Phys D Appl Phys 42:015507

    Article  Google Scholar 

  20. Newcombe DA, Crowley DE (1999) Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria. Appl Microbiol Biotechnol 51:877–882

    Article  PubMed  CAS  Google Scholar 

  21. Zhao S, Arthur EL, Coats JR (2003) Influence of microbial inoculation (Pseudomonas sp. strain ADP), the enzyme atrazine chlorohydrolase, and vegetation on degradation of atrazine and metolachlor in soil. J Agric Food Chem 51:3043–3048

    Article  PubMed  CAS  Google Scholar 

  22. Kauffmann C, Mandelbaum RT (1998) Entrapment of atrazine chlorohydrolase in sol gel glass matrix. J Biotechnol 62:169–176

    Article  CAS  Google Scholar 

  23. Lam CXF, Savalani MM, Teoh S, Hutmacher DW (2008) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 3:034108

    Article  PubMed  Google Scholar 

  24. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278:1–23

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank the Russell Berrie Nanotechnology Institute, the Stephen and Nancy Grand Water Research Institute and the BMBF-MOST German-Israeli Water Technology Research Fund (grant no. GR2336/103WT 1) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Tarre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, S., Avrahami, R., Zussman, E. et al. Encapsulation of Pseudomonas sp. ADP cells in electrospun microtubes for atrazine bioremediation. J Ind Microbiol Biotechnol 39, 1605–1613 (2012). https://doi.org/10.1007/s10295-012-1164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1164-3

Keywords

Navigation