Skip to main content
Log in

Metal biosorption in lignocellulosic biofuel biorefinery effluent: an initial step towards sustainability of water resources

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Biosorption of metals by microorganisms is a promising technology to remove accumulated non-process elements in highly recycled biorefinery process water. Removal of these elements would enable greater water reuse and reduce the environmental impact of effluent discharge. A model lignocellulosic ethanol biorefinery wastewater was created based on pulp mill effluent. This generated a wastewater with an environmentally realistic high loading of dissolved natural organic matter (900 mg/l), a potentially important factor influencing metal biosorption. Analysis of feedstock and pulp mill effluent indicated that Mn and Zn are likely to be problematic in highly recycled lignocellulosic ethanol biorefinery process water. Therefore, the growth of several bacteria and fungi from existing collections, and some isolated from pulp mill effluent were tested in the model wastewater spiked with Mn and Zn (0.2 mM). Wastewater isolates grew the best in the wastewater. Metal uptake varied by species and was much greater for Zn than Mn. A bacterium, Novosphingobium nitrogenifigens Y88T, removed the most metal per unit biomass, 35 and 17 mg Mn/g. No other organism tested decreased the Mn concentration. A yeast, Candida tropicalis, produced the most biomass and removed the most total metal (38 % of Zn), while uptake per unit biomass was 24 mg Zn/g. These results indicate that microorganisms can remove significant amounts of metals in wastewater with high concentrations of dissolved natural organic matter. Metal sorption by autochthonous microorganisms in an anaerobic bioreactor may be able to extend water reuse and therefore lower the water consumption of future biorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Addison SL, Foote SM, Reid NM, Lloyd-Jones G (2007) Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int J Syst Evol Microbiol 57(11):2467–2471. doi:10.1099/ijs.0.64627-0

    Article  PubMed  CAS  Google Scholar 

  2. American Public Health Association (APHA) (2005) Inductively coupled plasma/mass spectrometry (ICP/MS) method 3125B. In: Standard methods for the examination of water and wastewater, 21st ed. APHA, Washington

  3. Barns SM, Lane DJ, Sogin ML, Bibeau C, Weisburg WG (1991) Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol 173(7):2250–2255

    PubMed  CAS  Google Scholar 

  4. Berdicevsky I, Duek L, Merzbach D, Yannai S (1993) Susceptibility of different yeast species to environmental toxic metals. Environ Pollut 80(1):41–44

    Article  PubMed  CAS  Google Scholar 

  5. Borrok D, Aumend K, Fein JB (2007) Significance of ternary bacteria-metal-natural organic matter complexes determined through experimentation and chemical equilibrium modeling. Chem Geol 238(1–2):44–62

    Article  CAS  Google Scholar 

  6. Bruns T, Gardes M (1993) Molecular tools for the identification of ectomycorrhizal fungi: taxon-specific oligonucleotide probes for suilloid fungi. Mol Ecol 2(4):233–242

    Article  PubMed  CAS  Google Scholar 

  7. Burnett P-GG, Handley K, Peak D, Daughney CJ (2007) Divalent metal adsorption by the thermophile Anoxybacillus flavithermus in single and multi-metal systems. Chem Geol 244(3–4):493–506

    Article  CAS  Google Scholar 

  8. Choudhury R, Srivastava S (2001) Mechanism of zinc resistance in Pseudomonas putida strain S4. World J Microbiol Biotechnol 17(2):149–153. doi:10.1023/a:1016666000384

    Article  CAS  Google Scholar 

  9. Crane RS, Barton P, Cartmell E, Coulon F, Hillis P, Judd SJ, Santos A, Stephenson T, Lester JN (2010) Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: I. Evaluation of biomass adsorption capacity. Environ Technol 31(7):705–723. doi:10.1080/09593330.2010.481314

    Article  PubMed  CAS  Google Scholar 

  10. Creed JT, Brockhoff CA, Martin TD (1994) Determination of trace elements in waters and wastes by inductively coupled plasma—mass spectrometry. Method 200.8. Revision 5.4. United States Environmental Protection Agency (USEPA), Cincinnati

  11. de Schamphelaere KAC, Vasconcelos FM, Tack FMG, Allen HE, Janssen CR (2004) Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environ Toxicol Chem 23(5):1248–1255

    Article  PubMed  Google Scholar 

  12. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20(10):2383–2396. doi:10.1002/etc.5620201034

    Article  PubMed  Google Scholar 

  13. Franklin NM, Adams MS, Stauber JL, Lim RP (2001) Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicol 40(4):469–480. doi:10.1007/s002440010199

    Article  PubMed  CAS  Google Scholar 

  14. Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28. doi:10.1002/jctb.1999

    Article  CAS  Google Scholar 

  15. Glover CN, Hogstrand C (2002) In vivo characterisation of intestinal zinc uptake in freshwater rainbow trout. J Exp Biol 205(1):141–150

    PubMed  CAS  Google Scholar 

  16. Gu Y, Edwards L (2004) Prediction of metals distribution in mill processes, Part 2: fiber line metals profiles. Tappi J 3(2):13–20

    CAS  Google Scholar 

  17. Guillén Y, Navias D, Machuca Á (2009) Tolerance to wood preservatives by copper-tolerant wood-rot fungi native to south-central Chile. Biodegrad 20(1):135–142. doi:10.1007/s10532-008-9207-1

    Article  Google Scholar 

  18. Habets L, Driessen W (2007) Anaerobic treatment of pulp and paper mill effluents—status quo and new developments. Water Sci Technol 55(6):223–230. doi:10.2166/wst.2007.232

    Article  PubMed  Google Scholar 

  19. Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H (2006) Metal resistance in Candida biofilms. FEMS Microbiol Ecol 55(3):479–491

    Article  PubMed  CAS  Google Scholar 

  20. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103(30):11206–11210. doi:10.1073/pnas.0604600103

    Article  PubMed  CAS  Google Scholar 

  21. Jemaa N, Thompson R, Paleologou M, Berry RM (1999) Non-process elements in the kraft recovery cycle, Part I: sources, levels and process effects. Pulp Pap Can 100(9):T292–T296

    Google Scholar 

  22. Kanto Öqvist C, Kurola J, Pakarinen J, Ekman J, Ikävalko S, Simell J, Salkinoja-Salonen M (2008) Prokaryotic microbiota of recycled paper mills with low or zero effluent. J Ind Microbiol Biotechnol 35(10):1165–1173. doi:10.1007/s10295-008-0396-8

    Article  PubMed  Google Scholar 

  23. Kaushik S, Juwarkar A, Malik A, Satya S (2008) Biological removal of Cr(VI) by bacterial isolates obtained from metal contaminated sites. J Environ Sci Health Part A 43(4):419–423. doi:10.1080/10934520701795665

    CAS  Google Scholar 

  24. Kiiskia E (1994) The effects of water circuit closure in a pulp mill. Pap Puu 76(9):574–579

    Google Scholar 

  25. Kim G-H, Son D-S, Kim J–J (2005) Fungi colonizing Douglas Fir in cooling towers: identification and their decay capabilities. Wood Fiber Sci 37(4):638–642

    CAS  Google Scholar 

  26. Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  27. Lastra A, Gómez D, Romero J, Francisco JL, Luque S, Álvarez JR (2004) Removal of metal complexes by nanofiltration in a TCF pulp mill: technical and economic feasibility. J Membr Sci 242(1–2):97–105

    Article  CAS  Google Scholar 

  28. Liang Q, Lloyd-Jones G (2010) Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. Int J Syst Evol Microbiol 60:413–416. doi:10.1099/ijs.0.008144-0

    Article  PubMed  CAS  Google Scholar 

  29. MacDiarmid CW, Milanick MA, Eide DJ (2003) Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc shock. J Biol Chem 278(17):15065–15072. doi:10.1074/jbc.M300568200

    Article  PubMed  CAS  Google Scholar 

  30. Mantoura RFC, Dickson A, Riley JP (1978) The complexation of metals with humic materials in natural waters. Estuar Coast Mar Sci 6(4):387–408

    Article  CAS  Google Scholar 

  31. McCarthy JK, Hood IA, Brockerhoff EG, Carlson CA, Pawson SM, Forward M, Walbert K, Gardner JF (2010) Predicting sapstain and degrade in fallen trees following storm damage in a Pinus radiata forest. For Ecol Manag 260(9):1456–1466

    Article  Google Scholar 

  32. Merrick & Company (1998) Wastewater treatment options for the biomass-to-ethanol process. Project no. 19013104, task 6. Report to the National Renewable Energy Laboratory

  33. Mikes J, Siglova M, Cejkova A, Masak J, Jirku V (2005) The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination. Water Sci Technol 52(10–11):151–156

    PubMed  CAS  Google Scholar 

  34. Novis P, Halle C, Wilson B, Tremblay L (2009) Identification and characterization of freshwater algae from a pollution gradient using rbcL sequencing and toxicity testing. Arch Environ Contamin Toxicol 57(3):504–514. doi:10.1007/s00244-009-9312-0

    Article  CAS  Google Scholar 

  35. Nurmesniemi H, Pöykiö R, Perämäki P, Kuokkanen T (2005) The use of a sequential leaching procedure for heavy metal fractionation in green liquor dregs from a causticizing process at a pulp mill. Chemosphere 61(10):1475–1484

    Article  PubMed  CAS  Google Scholar 

  36. Oberoi HS, Vadlani PV, Brijwani K, Bhargav VK, Patil RT (2010) Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem 45(8):1299–1306

    Article  CAS  Google Scholar 

  37. Prigione V, Zerlottin M, Refosco D, Tigini V, Anastasi A, Varese GC (2009) Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi. Bioresour Technol 100(11):2770–2776

    Article  PubMed  CAS  Google Scholar 

  38. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  39. Rehman A, Anjum M (2011) Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ Monit Assess 174(1):585–595. doi:10.1007/s10661-010-1480-x

    Article  PubMed  CAS  Google Scholar 

  40. Rippon J, Gerhold R, Heath M (1980) Thermophilic and thermotolerant fungi isolated from the thermal effluent of nuclear power generating reactors: dispersal of human opportunistic and veterinary pathogenic fungi. Mycopathologia 70:169–179

    Article  PubMed  CAS  Google Scholar 

  41. Rodrigues de Miranda L (1978) A new genus: Sporopachydermia. Antonie Van Leeuwenhoek 44(3):439–450. doi:10.1007/bf00394320

    Article  PubMed  CAS  Google Scholar 

  42. Santos A, Judd S (2010) The fate of metals in wastewater treated by the activated sludge process and membrane bioreactors: a brief review. J Environ Monit 12(1):110–118

    Article  PubMed  CAS  Google Scholar 

  43. Shapiro H (2003) Practical flow cytometry, 4th edn. Wiley-Liss, New York

    Book  Google Scholar 

  44. Silva RMP, Rodriguez AA, De Oca J, Moreno DC (2009) Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour Technol 100(4):1533–1538. doi:10.1016/j.biortech.2008.06.057

    Article  Google Scholar 

  45. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Sci 329(5993):790–792. doi:10.1126/science.1189268

    Article  CAS  Google Scholar 

  46. Suihko M-L, Hoekstra E (1999) Fungi present in some recycled fibre pulps and paperboards. Nordic Pulp Pap Res J 14:202–206

    Article  Google Scholar 

  47. Tourney J, Ngwenya BT, Mosselmans JWF, Magennis M (2009) Physical and chemical effects of extracellular polymers (EPS) on Zn adsorption to Bacillus licheniformis S-86. J Colloid Interface Sci 337(2):381–389. doi:10.1016/j.jcis.2009.05.067

    Article  PubMed  CAS  Google Scholar 

  48. Tourney J, Ngwenya BT, Mosselmans JWF, Tetley L, Cowie GL (2008) The effect of extracellular polymers (EPS) on the proton adsorption characteristics of the thermophile Bacillus licheniformis S-86. Chem Geol 247(1–2):1–15

    Article  CAS  Google Scholar 

  49. Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291

    Article  PubMed  CAS  Google Scholar 

  50. Visser P, Ibelings B, Mur L, Walsby A, Huisman J, Matthijs H (2005) The ecophysiology of the harmful cyanobacterium Microcystis. In: Huisman J, Matthijs H, Visser P (eds) Harmful Cyanobacteria, vol 3. Aquatic Ecology Series. Springer, Netherlands, pp 109–142. doi:10.1007/1-4020-3022-3_6

  51. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Sci 289(5477):284–288. doi:10.1126/science.289.5477.284

    Article  Google Scholar 

  52. Wang H, Gielen GJH, Judd MC, Stuthridge TR, Blackwell BG, Tomer MD, Pearce SH (1999) Treatment efficiency of land application for thermo-mechanical pulpmill (TMP) effluent constituents. Appita J 52(5):383–386

    CAS  Google Scholar 

  53. Worsey MJ, Williams PA (1975) Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. J Bacteriol 124:7–13

    PubMed  CAS  Google Scholar 

  54. Yarita K, Sano A, Murata Y, Takayama A, Takahashi Y, Takahashi H, Yaguchi T, Ohori A, Kamei K, Miyaji M, Nishimura K (2007) Pathogenicity of Ochroconis gallopava isolated from hot springs in Japan and a review of published reports. Mycopathologia 164(3):135–147. doi:10.1007/s11046-007-9034-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sally Gaw and Rob Stainthorpe (University of Canterbury) for metals analysis; Matt Stott and Chris Daughney (Institute of Geological and Nuclear Sciences, GNS) for valuable scientific input; Phil Novis (Landcare Research) for providing Scenedesmus sp. and Chlorella sp.; Susie Wood (Cawthron Research) for providing Microcystis wesenbergii and other algae; Tripti Singh (Scion, Rotorua) for providing the Trichoderma viride, Trametes versicolor and Antrodia xantha; Ben MacDonald and Katrin Walbert (Scion). Funding provided by the Foundation for Research, Science and Technology (FRST) programme CO4 × 0801.

Conflict of interest

This research was funded by the Foundation of Research, Science and Technology (FRST). The funding agency had no scientific input into the study, and the authors declare that they have no conflict of interest.

Ethical standard

All experiments were conducted in accordance with New Zealand law, with particular attention to the Ministry of Agriculture and Forestry/Environmental Risk Management Authority policies regarding PC1 and PC2 containment facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. Palumbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palumbo, A.J., Taylor, S.C., Addison, S.L. et al. Metal biosorption in lignocellulosic biofuel biorefinery effluent: an initial step towards sustainability of water resources. J Ind Microbiol Biotechnol 39, 1345–1356 (2012). https://doi.org/10.1007/s10295-012-1129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1129-6

Keywords

Navigation