Skip to main content
Log in

Isolation and characterization of a novel GH67 α-glucuronidase from a mixed culture

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Hemicelluloses represent a large reservoir of carbohydrates that can be utilized for renewable products. Hydrolysis of hemicellulose into simple sugars is inhibited by its various chemical substituents. The glucuronic acid substituent is removed by the enzyme α-glucuronidase. A gene (deg75-AG) encoding a putative α-glucuronidase enzyme was isolated from a culture of mixed compost microorganisms. The gene was subcloned into a prokaryotic vector, and the enzyme was overexpressed and biochemically characterized. The DEG75-AG enzyme had optimum activity at 45 °C. Unlike other α-glucuronidases, the DEG75-AG had a more basic pH optimum of 7–8. When birchwood xylan was used as substrate, the addition of DEG75-AG increased hydrolysis twofold relative to xylanase alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

GH:

Glycoside hydrolase

MeGlcA:

4-O-methyl-d-glucuronic acid

DEG75-AG:

α-Glucuronidase from compost microorganism

IPTG:

Isopropyl-β-d-thiogalactopyranoside

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    PubMed  CAS  Google Scholar 

  2. Bajpai P (2004) Biological bleaching of chemical pulps. Crit Rev Biotechnol 24(1):1–58

    Article  PubMed  CAS  Google Scholar 

  3. Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Bongers M, Walton JD (2010) Synthetic multi-component enzyme mixtures for deconstruction of lignocellulosic biomass. Bioresource Technol 101(23):9097–9105

    Article  CAS  Google Scholar 

  4. Birijlall N, Manimaran A, Santhosh Kumar K, Permaul K, Singh S (2011) High level expression of a recombinant xylanase by Pichia pastoris NC38 in a 5L fermenter and its efficiency in biobleaching of bagasse pulp. Bioresource Technol 102(20):9723–9729

    Article  CAS  Google Scholar 

  5. Das NN, Das SC, Dutt AS, Roy A (1981) Lignin-xylan ester linkage in jute fiber (Corchorus capsularis). Carbohydr Res 94:73–82

    Article  CAS  Google Scholar 

  6. Das NN, Das SC, Mukherjee AK (1984) On the ester linkage between lignin and 4-O-methyl-glucurono-d-xylan in jute fiber (Corchorus capsularis). Carbohydr Res 127:345–348

    Article  CAS  Google Scholar 

  7. de Wet BJM, Prior BA (2004) Microbial α-glucuronidases. In: Saha BC, Hayashi K (eds) Lignocellulose biodegradation. American Chemical Society, Washington, DC, pp 241–254

    Chapter  Google Scholar 

  8. de Wet BJM, van Zyl WH, Prior BA (2006) Characterization of the Aureobasidium pullulans α-glucuronidase expressed in Saccharomyces cerevisiae. Enzym Microb Technol 38(5):649–656

    Article  Google Scholar 

  9. Gao D, Chundawat SPS, Liu T, Hermanson S, Gowda K, Brumm P, Dale BE, Balan V (2010) Strategy for identification of novel fungal and bacterial glycosyl hydrolase hybrid mixtures that can efficiently saccharify pretreated lignocellulosic biomass. Bioenergy Res 3(1):67–81

    Article  Google Scholar 

  10. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresource Technol 101(13):4775–4800

    Article  Google Scholar 

  11. Golan G, Shallom D, Teplitsky A, Zaide G, Shulami S, Baasov T, Stojanoff V, Thompson A, Shoham Y, Shoham G (2004) Crystal structures of Geobacillus stearothermophilus alpha-glucuronidase complexed with its substrate and products: mechanistic implications. J Biol Chem 279(4):3014–3024

    Article  PubMed  CAS  Google Scholar 

  12. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(Pt 2):695–696

    PubMed  Google Scholar 

  13. Khonzue P, Laothanachareon T, Rattanaphan N, Tinnasulanon P, Apawasin S, Paemanee A, Paemanee V, Tanapongpipat S, Champreda V, Eurwilaichitr L (2011) Optimization of xylanase production from Aspergillus niger for biobleaching of eucalyptus pulp. Biosci Biotechnol Biochem 75(6):1129–1134

    Article  PubMed  CAS  Google Scholar 

  14. Lee CC, Wagschal K, Kibblewhite-Accinelli RE, Orts WJ, Robertson GH, Wong DW (2009) An alpha-glucuronidase enzyme activity assay adaptable for solid phase screening. Appl Biochem Biotechnol 155(1–3):314–320

    PubMed  CAS  Google Scholar 

  15. Li R, Kibblewhite R, Orts WJ, Lee CC (2009) Molecular cloning and characterization of multidomain xylanase from manure library. World J Microbiol Biotechnol 25(11):2071–2078

    Article  CAS  Google Scholar 

  16. Miller GL (1959) Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  17. Milner Y, Avigad G (1967) A copper reagent for the determination of hexuronic acids and certain ketohexoses. Carbohydr Res 4:359–361

    Article  CAS  Google Scholar 

  18. Nurizzo D, Nagy T, Gilbert HJ, Davies GJ (2002) The structural basis for catalysis and specificity of the Pseudomonas cellulosa alpha-glucuronidase, GlcA67A. Structure 10(4):547–556

    Article  PubMed  CAS  Google Scholar 

  19. Ruile P, Winterhalter C, Liebl W (1997) Isolation and analysis of a gene encoding alpha-glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan. Mol Microbiol 23(2):267–279

    Article  PubMed  CAS  Google Scholar 

  20. Ryabova O, Vrsanska M, Kaneko S, van Zyl WH, Biely P (2009) A novel family of hemicellulolytic alpha-glucuronidase. FEBS Lett 583(9):1457–1462

    Article  PubMed  CAS  Google Scholar 

  21. Saha BC, Bothast RJ (1999) Enzymology of xylan degradation. In: Imam SH, Greene RV, Zaidi BR (eds) Biopolymers. American Chemical Society, Washington, DC, pp 167–194

    Chapter  Google Scholar 

  22. Shallom D, Golan G, Shoham G, Shoham Y (2004) Effect of dimer dissociation on activity and thermostability of the alpha-glucuronidase from Geobacillus stearothermophilus: dissecting the different oligomeric forms of family 67 glycoside hydrolases. J Bacteriol 186(20):6928–6937

    Article  PubMed  CAS  Google Scholar 

  23. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6(3):219–228

    Article  PubMed  CAS  Google Scholar 

  24. Shulami S, Gat O, Sonenshein AL, Shoham Y (1999) The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol 181(12):3695–3704

    PubMed  CAS  Google Scholar 

  25. Sims REH, Mabee W, Saddler JN, Taylor M (2010) An overview of second generation biofuel technologies. Bioresource Technol 101(6):1570–1580

    Article  CAS  Google Scholar 

  26. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306(5705):2206–2211

    Article  PubMed  CAS  Google Scholar 

  27. Spiridon I, Popa VI (2005) Hemicelluloses: structure and properties. In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, pp 475–489

    Google Scholar 

  28. Suresh C, Kitaoka M, Hayashi K (2003) A thermostable non-xylanolytic alpha-glucuronidase of Thermotoga maritima MSB8. Biosci Biotechnol Biochem 67(11):2359–2364

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi N, Koshijima T (1988) Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci Technol 22:231–241

    Article  CAS  Google Scholar 

  30. Wilson KS, von Hippel PH (1995) Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci U S A 92(19):8793–8797

    Article  PubMed  CAS  Google Scholar 

  31. Zaide G, Shallom D, Shulami S, Zolotnitsky G, Golan G, Baasov T, Shoham G, Shoham Y (2001) Biochemical characterization and identification of catalytic residues in alpha-glucuronidase from Bacillus stearothermophilus T-6. Eur J Biochem 268(10):3006–3016

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Mention of trade names or commercial products in this report is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.C., Kibblewhite, R.E., Wagschal, K. et al. Isolation and characterization of a novel GH67 α-glucuronidase from a mixed culture. J Ind Microbiol Biotechnol 39, 1245–1251 (2012). https://doi.org/10.1007/s10295-012-1128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1128-7

Keywords

Navigation