Skip to main content
Log in

Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Genome shuffling is an efficient approach for the rapid improvement of the yield of secondary metabolites. This study was undertaken to enhance the yield of surfactin produced by Bacillus amyloliquefaciens ES-2-4 using genome shuffling and to examine changes in SrfA expression of the improved phenotype at the transcriptional level. Six strains with subtle improvements in lipopeptide yield were obtained from populations generated by ultraviolet irradiation, nitrosoguanidine, and ion beam mutagenesis. These strains were then subjected to recursive protoplast fusion. A strain library that was likely to yield positive colonies was created by fusing the lethal protoplasts obtained from both ultraviolet irradiation and heat treatments. After two rounds of genome shuffling, a high-yield recombinant F2-38 strain that exhibited 3.5- and 10.3-fold increases in surfactin production in shake flask and fermenter respectively, was obtained. Comparative analysis of synthetase gene expression was conducted between the initial and shuffled strains using FQ (fluorescent quantitation) RT-PCR. Delta CT (threshold cycle) relative quantitation analysis revealed that surfactin synthetase gene (srfA) expression at the transcriptional level in the F2-38 strain was 15.7-fold greater than in the ES-2-4 wild-type. The shuffled strain has a potential application in food and pharmaceutical industries. At the same time, the analysis of improved phenotypes will provide more valuable data for inverse metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bie XM, Lu ZX, Lu FX, Zeng XX (2005) Screening the main factors affecting extraction of the antimicrobial substance from Bacillus sp. fmbJ using Plackett–Burman method. World J Microbiol Biotechnol 21:925–928

    Article  CAS  Google Scholar 

  2. Cao GQ, Zhang XH, Zhong L, Lu ZX (2010) A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides. Biotechnol Lett 33:1047–1051

    Article  Google Scholar 

  3. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  PubMed  CAS  Google Scholar 

  4. Chen Y, Lin ZX, Zou ZY, Zhang F, Liu D, Liu XH, Tang JZ, Zhu WM, Huang B (1998) High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation. Nucl Instrum Methods Phys Res B 140:341–348

    Article  CAS  Google Scholar 

  5. Dai MH, Copley SD (2004) Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC39723. Appl Environ Microbiol 70:2391–2397

    Article  PubMed  CAS  Google Scholar 

  6. Deng Y, Lu ZX, Lu FX, Wang Y, Bie XM (2011) Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil. World J Microbiol Biotechnol 27:1803–1807

    Article  CAS  Google Scholar 

  7. Dimitrov K, Gancel F, Montastruc L, Nikov I (2008) Liquid membrane extraction of bioactive amphiphilic substances: recovery of surfactin. Biochem Eng J 42:248–253

    Article  CAS  Google Scholar 

  8. Fang CJ, Lu ZX, Sun LJ, Lu FX, Bie XM (2006) Study on mutation breeding and fermentation of antimicrobial lipopeptides yielding bacterium with 20 keV N+ ion beam implantation. J Radiat Res Radiat Process 24:333–336

    CAS  Google Scholar 

  9. Gibson UEM, Heid CA, Williams PM (1996) A novel method for real time quantitative RT-PCR. Genome Res 6:994–1001

    Article  Google Scholar 

  10. Gong JX, Zheng HJ, Wu ZJ, Chen T, Zhao XM (2009) Genome shuffling: progress and applications for phenotype improvement. Biotechnol Adv 45:996–1005

    Article  Google Scholar 

  11. Hida H, Yamada T, Yamada Y (2007) Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Appl Microbiol Biotechnol 73:1387–1393

    Article  PubMed  CAS  Google Scholar 

  12. Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, Pauw ED, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett–Burman design. Appl Biochem Biotechnol 77:223–233

    Article  Google Scholar 

  13. Kanlayavattanakul M, Lourith N (2010) Lipopeptides in cosmetics. Int J Cosmet Sci 32:1–8

    Article  PubMed  CAS  Google Scholar 

  14. Kowall M, Vater J, Kluge B, Stein T, Franke P, Ziessow D (1998) Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interface Sci 204:1–8

    Article  PubMed  CAS  Google Scholar 

  15. Li SC, Wu M, Yao JM, Pan RR, Yu ZL (2005) Mutation-screening in xylanase-producing strains by ion implantation. Plasma Sci Technol 7:2697–2700

    Article  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  17. Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125

    Article  PubMed  CAS  Google Scholar 

  18. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  PubMed  CAS  Google Scholar 

  19. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WPC, Ryan CM, del Cardayré S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  PubMed  CAS  Google Scholar 

  20. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  PubMed  CAS  Google Scholar 

  21. Schaller KD, Fox SL, Bruhn DF, Noah KS, Bala GA (2004) Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery. Appl Biochem Biotechnol 115:827–836

    Article  Google Scholar 

  22. Steller S, Sokoll A, Wilde C, Bernhard F, Franke P, Vater J (2004) Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemistry 43:11331–11343

    Article  PubMed  CAS  Google Scholar 

  23. Sun HG, Bie XM, Lu FX, Lu YP, WuYun DL, Lu ZX (2009) Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Can J Microbiol 55:1003–1009

    Article  PubMed  CAS  Google Scholar 

  24. Sun LJ, Lu ZX, Bie XM, Lu FX, Yang SY (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266

    Article  CAS  Google Scholar 

  25. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  PubMed  CAS  Google Scholar 

  26. Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181–187

    Article  PubMed  CAS  Google Scholar 

  27. Yu L, Pei XL, Lei T, Wang YH, Feng Y (2008) Genome shuffling enhanced l-lactic acid production by improving glucose tolerance of Lactobacillus rhamnosus. J Biotechnol 134:154–159

    Article  PubMed  CAS  Google Scholar 

  28. Yu ZL (2000) Ion beam in application in genetic modification. IEEE Trans Plasma Sci 28:128–132

    Article  CAS  Google Scholar 

  29. Zhang Y, Liu JZ, Huang JS, Mao ZW (2010) Genome shuffling of Propionibacterium shermanii for improving vitamin B12 production and comparative proteome analysis. J Biotechnol 148:139–143

    Article  PubMed  CAS  Google Scholar 

  30. Zhang YX, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayré S (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  PubMed  CAS  Google Scholar 

  31. Zhao M, Dai CC, Guan XY, Tao J (2009) Genome shuffling amplifies the carbon source spectrum and improves arachidonic acid production in Diasporangium sp. Enzyme Microb Technol 45:419–425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 30871753), the National Research Program of China (No. 2011BAD23B05), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Li, Y., Zhang, C. et al. Genome shuffling of Bacillus amyloliquefaciens for improving antimicrobial lipopeptide production and an analysis of relative gene expression using FQ RT-PCR. J Ind Microbiol Biotechnol 39, 889–896 (2012). https://doi.org/10.1007/s10295-012-1098-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1098-9

Keywords

Navigation