Skip to main content
Log in

Modification of CusSR bacterial two-component systems by the introduction of an inducible positive feedback loop

  • Environmental Microbiology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The CusSR two-component system (TCS) is a copper-sensing apparatus of E. coli that is responsible for regulating the copper-related homeostatic system. The dynamic characteristics of the CusSR network were modified by the introduction of a positive feedback loop. To construct the feedback loop, the CusR, which is activated by the cusC promoter, was cloned downstream of the cusC promoter and reporter protein. The feedback loop system, once activated by environmental copper, triggers the activation of the cusC promoter, which results in the amplification of a reporter protein and CusR expression. The threshold copper concentration for the activation of the modified CusSR TCS network was lowered from 2,476.5 μg/l to 247.7 μg/l, which indicates a tenfold increase in sensitivity. The intensity of the output signal was increased twofold, and was maintained for 16 h. The strategy proposed in this study can also be applied to modify the dynamic characteristics of other TCSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antsaklis PJ, Michel AN (2005) Linear systems. Corrected edition. edn. Birkhäuser, Boston

  2. Balázsi G, Barabási A-L, Oltvai ZN (2005) Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci USA 102(22):7841–7846

    Article  PubMed  Google Scholar 

  3. Chang D-E, Leung S, Atkinson MR, Reifler A, Forger D, Ninfa AJ (2009) Building biological memory by linking positive feedback loops. Proc Natl Acad Sci USA

  4. DiGiuseppe PA, Silhavy TJ (2003) Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 185(8):2432–2440

    Article  PubMed  CAS  Google Scholar 

  5. Farmer WR, Liao JC (2000) Improving lycopene production in Escherichia coli by engineering metabolic control. Nat Biotechnol 18(5):533–537

    Article  PubMed  CAS  Google Scholar 

  6. Kasahara M, Nakata A, Shinagawa H (1992) Molecular analysis of the Escherichia coli phoP-phoQ operon. J Bacteriol 174(2):492–498

    PubMed  CAS  Google Scholar 

  7. Kato A, Tanabe H, Utsumi R (1999) Molecular characterization of the PhoP-PhoQ two-component system in Escherichia coli K-12: identification of extracellular Mg2+−responsive promoters. J Bacteriol 181(17):5516–5520

    PubMed  CAS  Google Scholar 

  8. Laub MT, Goulian M (2007) Specificity in two-component signal transduction pathways. Annu Rev Genet 41(1):121–145

    Article  PubMed  CAS  Google Scholar 

  9. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70(4):910–938

    Article  PubMed  CAS  Google Scholar 

  10. Miller WG, Leveau JH, Lindow SE (2000) Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13(11):1243–1250

    Article  PubMed  CAS  Google Scholar 

  11. Miyashiro T, Goulian M (2008) High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. Proc Natl Acad Sci 105(45):17457–17462

    Article  PubMed  CAS  Google Scholar 

  12. Munson GP, Lam DL, Outten FW, O’Halloran TV (2000) Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 182(20):5864–5871

    Article  PubMed  CAS  Google Scholar 

  13. Nguyen T, Hong S (2008) Whole genome-based phylogenetic analysis of bacterial two-component systems. Biotechnol Bioprocess Eng 13(3):288–292

    Article  CAS  Google Scholar 

  14. Nguyen T, Hong S (2009) Construction and comparative analysis of two-component system and metabolic network profile based phylogenetic trees. Biotechnol Bioprocess Eng 14(2):129–133

    Article  CAS  Google Scholar 

  15. Otto K, Silhavy TJ (2002) Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci 99(4):2287–2292

    Article  PubMed  CAS  Google Scholar 

  16. Salis H, Tamsir A, Voigt C (2009) Engineering bacterial signals and sensors. Contrib Microbiol 16:194–225

    Article  PubMed  CAS  Google Scholar 

  17. Savageau MA (1974) Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252(5484):546–549

    Article  PubMed  CAS  Google Scholar 

  18. Shin D, Lee E-J, Huang H, Groisman EA (2006) A positive feedback loop promotes transcription surge that jump-starts Salmonella virulence circuit. Science 314(5805):1607–1609

    Article  PubMed  CAS  Google Scholar 

  19. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  20. Williams CL, Cotter PA (2007) Autoregulation is essential for precise temporal and steady-state regulation by the Bordetella BvgAS phosphorelay. J Bacteriol 189(5):1974–1982

    Article  PubMed  CAS  Google Scholar 

  21. Yamamoto K, Ishihama A (2005) Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56(1):215–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant number PJ008057), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Ho Hong.

Additional information

Sambandam Ravikumar and Van Dung Pham contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, S., Pham, V.D., Lee, S.H. et al. Modification of CusSR bacterial two-component systems by the introduction of an inducible positive feedback loop. J Ind Microbiol Biotechnol 39, 861–868 (2012). https://doi.org/10.1007/s10295-012-1096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1096-y

Keywords

Navigation