Skip to main content
Log in

Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Economically viable production of solvents through acetone–butanol–ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of five proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alsaker KV, Papoutsakis ET (2005) Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 187:7103

    Article  PubMed  CAS  Google Scholar 

  2. Apweiler R, Bairoch A, Wu C, Barker W, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115

    Article  PubMed  CAS  Google Scholar 

  3. Carvalho P, Fischer J, Chen E, Yates J, Barbosa V (2008) PatternLab for proteomics: a tool for differential shotgun proteomics. BMC Bioinformatics 9:316

    Article  PubMed  Google Scholar 

  4. Eng J, McCormack A, Yates J (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  5. Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL, Washburn MP (2006) Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40:303–311

    Article  PubMed  CAS  Google Scholar 

  6. Gong CS, Chen L, Flickinger M, Tsao G (1981) Conversion of hemicellulose carbohydrates. Springer, Berlin

  7. Grimmler C, Held C, Liebl W, Ehrenreich A (2010) Transcriptional analysis of catabolite repression in Clostridium acetobutylicum growing on mixtures of d-glucose and d-xylose. J Biotechnol 150:315–323

    Article  PubMed  CAS  Google Scholar 

  8. Grimmler C, Janssen H, Krauβe D, Fischer RJ, Bahl H, Dürre P, Liebl W, Ehrenreich A (2011) Genome-wide gene expression analysis of the switch between acidogenesis and solventogenesis in continuous cultures of Clostridium acetobutylicum. J Mol Microbiol Biotechnol 20:1–15

    Article  PubMed  CAS  Google Scholar 

  9. Gu Y, Li J, Zhang L, Chen J, Niu L, Yang Y, Yang S, Jiang W (2009) Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli. J Biotechnol 143:284–287

    Article  PubMed  CAS  Google Scholar 

  10. Hartmanis MGN, Gatenbeck S (1984) Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate. Appl Environ Microbiol 47:1277

    PubMed  CAS  Google Scholar 

  11. Hibsch A, Grinsted E (1954) Methods for the growth and enumeration of anaerobic spore-formers from cheese, with observations on the effect of nisin. J Dairy Res 21:101–110

    Article  Google Scholar 

  12. Hüsemann MHW, Papoutsakis ET (1989) Enzymes limiting butanol and acetone formation in continuous and batch cultures of Clostridium acetobutylicum. Appl Microb Biotechnol 31:435–444

    Article  Google Scholar 

  13. Janssen H, Döring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer RJ (2010) A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl Microb Biotechnol 1–18

  14. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  PubMed  CAS  Google Scholar 

  15. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27

    Article  PubMed  CAS  Google Scholar 

  16. Lo I, Denef V, VerBerkmoes N, Shah M, Goltsman D, DiBartolo G, Tyson G, Allen E, Ram R, Detter J (2007) Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature 446:537–541

    Article  PubMed  CAS  Google Scholar 

  17. Mao S, Luo Y, Zhang T, Li J, Bao G, Zhu Y, Chen Z, Zhang Y, Li Y, Ma Y (2010) Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9:3046–3061

    Article  PubMed  CAS  Google Scholar 

  18. Mosley AL, Florens L, Wen Z, Washburn MP (2009) A label-free quantitative proteomic analysis of the Saccharomyces cerevisiae nucleus. J Proteomics 72:110–120

    Article  PubMed  CAS  Google Scholar 

  19. Nolling J, Breton G, Omelchenko M, Makarova K, Zeng Q, Gibson R, Lee H, Dubois J, Qiu D, Hitti J (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823

    Article  PubMed  CAS  Google Scholar 

  20. Ounine K, Petitdemange H, Raval G, Gay R (1983) Acetone-butanol production from pentoses by Clostridium acetobutylicum. Biotechnol Lett 5:605–610

    Article  CAS  Google Scholar 

  21. Papoutsakis E, Bennett G (1993) Cloning, structure, and expression of acid and solvent pathway genes of Clostridium acetobutylicum. Biotechnology (Reading, Mass) 25:157

  22. Peng J, Elias J, Thoreen C, Licklider L, Gygi S (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC–MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  PubMed  CAS  Google Scholar 

  23. Petersen DJ, Bennett GN (1990) Purification of acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824 and cloning of the acetoacetate decarboxylase gene in Escherichia coli. Appl Environ Microbiol 56:3491

    PubMed  CAS  Google Scholar 

  24. Petersen DJ, Welch RW, Rudolph FB, Bennett GN (1991) Molecular cloning of an alcohol (butanol) dehydrogenase gene cluster from Clostridium acetobutylicum ATCC 824. J Bacteriol 173:1831

    PubMed  CAS  Google Scholar 

  25. Qureshi N, Meagher M, Huang J, Hutkins R (2001) Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187:93–102

    Article  CAS  Google Scholar 

  26. Ram R, VerBerkmoes N, Thelen M, Tyson G, Baker B, Blake R, Shah M, Hettich R, Banfield J (2005) Community proteomics of a natural microbial biofilm. Science 308:1915

    Article  PubMed  CAS  Google Scholar 

  27. Reid SJ (2005) Genetic organization and regulation of hexose and pentose utilization in the Clostridia. Handbook on Clostridia. CRC Press, Boca Raton, pp 133–153

    Google Scholar 

  28. Schaffer S, Isci N, Zickner B, Dürre P (2002) Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 23:110

    Article  PubMed  CAS  Google Scholar 

  29. Sivagnanam K, Raghavan VGS, Shah M, Hettich RL, Verberkmoes NC, Lefsrud MG (2011) Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose. Proteome Sci 9:66

    Article  PubMed  CAS  Google Scholar 

  30. Stim-Herndon KP, Petersen DJ, Bennett GN (1995) Characterization of an acetyl-CoA C-acetyltransferase (thiolase) gene from Clostridium acetobutylicum ATCC 824. Gene 154:81–85

    Article  PubMed  CAS  Google Scholar 

  31. Sullivan L, Bennett GN (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. J Ind Microbiol Biotechnol 33:298–308

    Article  PubMed  CAS  Google Scholar 

  32. Tabb D, McDonald W, Yates J III (2002) DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1:21–26

    Article  PubMed  CAS  Google Scholar 

  33. Verberkmoes N, Russell A, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud M, Apajalahti J, Tysk C, Hettich R (2008) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189

    Article  PubMed  Google Scholar 

  34. Yu E, Saddler J (1983) Enhanced acetone butanol fermentation by Clostridium acetobutylicum grown on d xylose in the presence of acetic or butyric acid. FEMS Microbiol Lett 18:103–107

    CAS  Google Scholar 

  35. Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ (2009) Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 36:1127–1138

    Article  PubMed  CAS  Google Scholar 

  36. Zybailov BL, Florens L, Washburn MP (2007) Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol BioSyst 3:354–360

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The ORNL part of this research was sponsored in part by the U.S. Department of Energy under Contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. We thank Dr. Tim Geary and Dr. Robert Kearney from McGill University for guiding with the proteomic data analysis and interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark G. Lefsrud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10295_2012_1094_MOESM1_ESM.pdf

The proteins identified from C. acetobutylicum ATCC 824 and their functional classifications were shown in the supplementary tables. Supplementary material 1 (PDF 1,463 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivagnanam, K., Raghavan, V.G.S., Shah, M. et al. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase. J Ind Microbiol Biotechnol 39, 949–955 (2012). https://doi.org/10.1007/s10295-012-1094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1094-0

Keywords

Navigation