Protein engineering towards natural product synthesis and diversification

Review

Abstract

A dazzling array of enzymes is used by nature in making structurally complex natural products. These enzymes constitute a molecular toolbox that may be used in the construction and fine-tuning of pharmaceutically active molecules. Aided by technological advancements in protein engineering, it is now possible to tailor the activities and specificities of these enzymes as biocatalysts in the production of both natural products and their unnatural derivatives. These efforts are crucial in drug discovery and development, where there is a continuous quest for more potent agents. Both rational and random evolution techniques have been utilized in engineering these enzymes. This review will highlight some examples from several large families of natural products.

References

  1. 1.
    Aaron J, Lin X, Cane DE, Christianson DW (2010) Structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates. Biochemistry 49(8):1787–1797PubMedCrossRefGoogle Scholar
  2. 2.
    Abe I (2007) Enzymatic synthesis of cyclic triterpenes. Nat Prod Rep 24(6):1311–1331PubMedCrossRefGoogle Scholar
  3. 3.
    Abe I, Morita H, Oguro S, Noma H, Wanibuchi K, Kawahara N, Goda Y, Noguchi H, Kohno T (2007) Structure-based engineering of a plant type III polyketide synthase: formation of an unnatural nonaketide naphthopyrone. J Am Chem Soc 129(18):5976–5980PubMedCrossRefGoogle Scholar
  4. 4.
    Abe I, Utsumi Y, Oguro S, Morita H, Sano Y, Noguchi H (2005) A plant type III polyketide synthase that produces pentaketide chromone. J Am Chem Soc 127(5):1362–1363PubMedCrossRefGoogle Scholar
  5. 5.
    Abe I, Watanabe T, Lou W, Noguchi H (2006) Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase. FEBS J 273(1):208–218PubMedCrossRefGoogle Scholar
  6. 6.
    Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20(1):79–110PubMedCrossRefGoogle Scholar
  7. 7.
    Baerga-Ortiz A, Popovic B, Siskos AP, O’Hare HM, Spiteller D, Williams MG, Campillo N, Spencer JB, Leadlay PF (2006) Directed mutagenesis alters the stereochemistry of catalysis by isolated ketoreductase domains from the erythromycin polyketide synthase. Chem Biol 13(3):277–285PubMedCrossRefGoogle Scholar
  8. 8.
    Bernhardt P, McCoy E, O’Connor SE (2007) Rapid identification of enzyme variants for re-engineered alkaloid biosynthesis in periwinkle. Chem Biol 14(8):888–897PubMedCrossRefGoogle Scholar
  9. 9.
    Brautaset T, Sletta H, Degnes KF, Sekurova ON, Bakke I, Volokhan O, Andreassen T, Ellingsen TE, Zotchev SB (2011) New nystatin-related antifungal polyene macrolides with altered polyol region generated via biosynthetic engineering of Streptomyces noursei. Appl Environ Microbiol. doi:10.1128/AEM.05780-05711
  10. 10.
    Brautaset T, Sletta H, Nedal A, Borgos SE, Degnes KF, Bakke I, Volokhan O, Sekurova ON, Treshalin ID, Mirchink EP, Dikiy A, Ellingsen TE, Zotchev SB (2008) Improved antifungal polyene macrolides via engineering of the nystatin biosynthetic genes in Streptomyces noursei. Chem Biol 15(11):1198–1206PubMedCrossRefGoogle Scholar
  11. 11.
    Challis G, Ravel J, Townsend CA (2000) Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem Biol 7(3):211–224PubMedCrossRefGoogle Scholar
  12. 12.
    Chan YA, Podevels AM, Kevany BM, Thomas MG (2009) Biosynthesis of polyketide synthase extender units. Nat Prod Rep 26(1):90–114PubMedCrossRefGoogle Scholar
  13. 13.
    Chen C-Y, Georgiev I, Anderson AC, Donald BR (2009) Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci USA 106(10):3764–3769PubMedCrossRefGoogle Scholar
  14. 14.
    Chen S, Galan MC, Coltharp C, O’Connor SE (2006) Redesign of central enzyme in alkaloid biosynthesis. Chem Biol 13(11):1137–1141PubMedCrossRefGoogle Scholar
  15. 15.
    Conti E, Stachelhaus T, Marahiel MA (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin. EMBO J 16(14):4174–4183PubMedCrossRefGoogle Scholar
  16. 16.
    Cox RJ (2007) Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org Biomol Chem 5(13):2010–2026PubMedCrossRefGoogle Scholar
  17. 17.
    Cunningham F, Gantt E (2000) One ring or two? Determination of ring number in carotenoids by lycopene ε-cyclases. Proc Natl Acad Sci USA 98(5):2905–2910CrossRefGoogle Scholar
  18. 18.
    Dang T, Prestwich GD (2000) Site-directed mutagenesis of squalene-hopene cyclase: altered substrate specificity and product distribution. Chem and Biol 7(8):643–649CrossRefGoogle Scholar
  19. 19.
    Das A, Khosla C (2009) Biosynthesis of aromatic polyketides in bacteria. Acc Chem Res 42(5):631–639PubMedCrossRefGoogle Scholar
  20. 20.
    Dewick PM (2002) The biosynthesis of C5–C25 terpenoid compounds. Nat Prod Rep 19(2):181–222PubMedCrossRefGoogle Scholar
  21. 21.
    Ding W, Lei C, He Q, Zhang Q, Bi Y, Liu W (2010) Insights into bacterial 6-methylsalicylic acid synthase and its engineering to orsellinic acid synthase for spirotetronate generation. Chem Biol 17(5):495–503PubMedCrossRefGoogle Scholar
  22. 22.
    Eppelmann K, Stachelhaus T, Marahiel MA (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41(30):9718–9726PubMedCrossRefGoogle Scholar
  23. 23.
    Evans B, Chen Y, Metcalf WW, Zhao H, Kelleher NL (2011) Directed evolution of nonribosomal peptide synthetase AdmK generates new andrimid derivatives in vivo. Chem Biol 18(5):601–607PubMedCrossRefGoogle Scholar
  24. 24.
    Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6(8):775–784PubMedCrossRefGoogle Scholar
  25. 25.
    Fischbach M, Lai JR, Roche ED, Walsh CT, Liu DR (2007) Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc Natl Acad Sci USA 104(29):11951–11956PubMedCrossRefGoogle Scholar
  26. 26.
    Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325(5944):1089–1093PubMedCrossRefGoogle Scholar
  27. 27.
    Füll C (2001) Bicyclic triterpenes as new main products of squalene-hopene cyclase by mutation at conserved tyrosine residues. FEBS Lett 509(3):361–364PubMedCrossRefGoogle Scholar
  28. 28.
    Gantt RW, Goff RD, Williams GJ, Thorson JS (2008) Probing the aglycon promiscuity of an engineered glycosyltransferase. Angew Chem Int Ed Engl 47(46):8889–8892PubMedCrossRefGoogle Scholar
  29. 29.
    Gao X, Xie X, Pashkov I, Sawaya MR, Laidman J, Zhang W, Cacho R, Yeates TO, Tang Y (2009) Directed evolution and structural characterization of a simvastatin synthase. Chem Biol 16(10):1064–1074PubMedCrossRefGoogle Scholar
  30. 30.
    Greenhagen B, Chappell J (2001) Molecular scaffolds for chemical wizardry: learning nature’s rules for terpene cyclases. Proc Natl Acad Sci USA 98(24):13479–13481PubMedCrossRefGoogle Scholar
  31. 31.
    Greenhagen B, O’Maille PE, Noel JP, Chappell J (2006) Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc Natl Acad Sci USA 103(26):9826–9831PubMedCrossRefGoogle Scholar
  32. 32.
    Hahn M, Stachelhaus T (2004) Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. Proc Natl Acad Sci USA 101(44):15585–15590PubMedCrossRefGoogle Scholar
  33. 33.
    Hahn M, Stachelhaus T (2006) Harnessing the potential of communication-mediating domains for the biocombinatorial synthesis of nonribosomal peptides. Proc Natl Acad Sci USA 103(2):275–280PubMedCrossRefGoogle Scholar
  34. 34.
    Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48(26):4688–4716PubMedCrossRefGoogle Scholar
  35. 35.
    Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24(1):162–190PubMedCrossRefGoogle Scholar
  36. 36.
    Hyatt D, Croteau R (2005) Mutational analysis of a monoterpene synthase reaction: Altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch Biochem Biophys 439(2):222–233PubMedCrossRefGoogle Scholar
  37. 37.
    Kampranis S, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris A, Goodenough PW, Johnson CB (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell 19(6):1994–2005PubMedCrossRefGoogle Scholar
  38. 38.
    Keatinge-Clay AT, Maltby DA, Medzihradszky KF, Khosla C, Stroud RM (2004) An antibiotic factory caught in action. Nat Struct Mol Biol 11(9):888–893PubMedCrossRefGoogle Scholar
  39. 39.
    Khosla C, Kapur S, Cane DE (2009) Revisiting the modularity of modular polyketide synthases. Curr Opin Chem Biol 13(2):135–143PubMedCrossRefGoogle Scholar
  40. 40.
    Kim W, Lee D, Hong SS, Na Z, Shin JC, Roh SH, Wu CZ, Choi O, Lee K, Shen YM, Paik SG, Lee JJ, Hong YS (2009) Rational biosynthetic engineering for optimization of geldanamycin analogues. Chembiochem 10(7):1243–1251PubMedCrossRefGoogle Scholar
  41. 41.
    Kimura M, Kushiro T, Shibuya M, Ebizuka Y, Abe I (2010) Protostadienol synthase from Aspergillus fumigatus: Functional conversion into lanosterol synthase. Biochem Biophys Res Commun 391(1):899–902PubMedCrossRefGoogle Scholar
  42. 42.
    Klundt T, Bocola M, Lutge M, Beuerle T, Liu B, Beerhues L (2009) A single amino acid substitution converts benzophenone synthase into phenylpyrone synthase. J Biol Chem 284(45):30957–30964PubMedCrossRefGoogle Scholar
  43. 43.
    Kohzaki K, Gomi K, Yamasaki-Kokudo Y, Ozawa R, Takabayashi J, Akimitsu K (2009) Characterization of a sabinene synthase gene from rough lemon (Citrus jambhiri). J Plant Physiol 166(15):1700–1704PubMedCrossRefGoogle Scholar
  44. 44.
    Kutchan TM (1993) Strictosidine: from alkaloid to enzyme to gene. Phytochemistry 32(3):493–506PubMedCrossRefGoogle Scholar
  45. 45.
    Kwan DH, Leadlay PF (2010) Mutagenesis of a modular polyketide synthase enoylreductase domain reveals insights into catalysis and stereospecificity. ACS Chem Biol 5(9):829–838PubMedCrossRefGoogle Scholar
  46. 46.
    Kwan DH, Sun Y, Schulz F, Hong H, Popovic B, Sim-Stark JC, Haydock SF, Leadlay PF (2008) Prediction and manipulation of the stereochemistry of enoylreduction in modular polyketide synthases. Chem Biol 15(11):1231–1240PubMedCrossRefGoogle Scholar
  47. 47.
    Lai JR, Fischbach MA, Liu DR, Walsh CT (2006) Localized protein interaction surfaces on the EntB carrier protein revealed by combinatorial mutagenesis and selection. J Am Chem Soc 128(34):11002–11003PubMedCrossRefGoogle Scholar
  48. 48.
    Leonard E, Ajikumar PK, Thayer K, Xiao W-H, Mo JD, Tidor B, Stephanopoulos G, Prather KLJ (2010) Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci USA 107(31):13654–13659PubMedCrossRefGoogle Scholar
  49. 49.
    Lilien R, Stevens BW, Anderson AC, Donald BR (2005) A novel ensemble-based scoring and search algorithm for protein redesign and its application to modify the substrate specificity of the gramicidin synthetase A phenylalanine adenylation enzyme. J Comput Biol 12(6):740–761PubMedCrossRefGoogle Scholar
  50. 50.
    Lodeiro S, Schulz-Gasch T, Matsuda SP (2005) Enzyme redesign: two mutations cooperate to convert cycloartenol synthase into an accurate lanosterol synthase. J Am Chem Soc 127(41):14132–14133PubMedCrossRefGoogle Scholar
  51. 51.
    Loris E, Panjikar S, Ruppert M, Barleben L, Unger M, Schübel H (2007) Structure-based engineering of strictosidine synthase: auxiliary for alkaloid libraries. Chem Biol 14(9):979–985PubMedCrossRefGoogle Scholar
  52. 52.
    Ma X, Panjikar S, Koepke J, Loris E, Stöckigt J (2006) The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed β-propeller fold in plant proteins. Plant Cell 18(4):907–920PubMedCrossRefGoogle Scholar
  53. 53.
    McDaniel R, Thamchaipenet A, Gustafsson C, Fu H, Betlach M, Ashley G (1999) Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel “unnatural” natural products. Proc Natl Acad Sci USA 96(5):1846–1851PubMedCrossRefGoogle Scholar
  54. 54.
    Meyer M, Xu R, Matsuda SPT (2002) Directed evolution to generate cycloartenol synthase mutants that produce lanosterol. Org Lett 4(8):1395–1398PubMedCrossRefGoogle Scholar
  55. 55.
    Mijts B, Lee PC, Schmidt-Danner C (2006) Identification of a carotenoid oxygenase synthesizing acyclic xanthophylls: combinatorial biosynthesis and directed evolution. Chem Biol 12(4):453–460CrossRefGoogle Scholar
  56. 56.
    Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19(1):70–99PubMedCrossRefGoogle Scholar
  57. 57.
    Morita H, Kondo S, Oguro S, Noguchi H, Sugio S, Abe I, Kohno T (2007) Structural insight into chain-length control and product specificity of pentaketide chromone synthase from Aloe arborescens. Chem Biol 14(4):359–369PubMedCrossRefGoogle Scholar
  58. 58.
    Morrone D, Xu M, Fulton DB, Determan MK, Peters RJ (2008) Increasing complexity of a diterpene synthase reaction with a single residue switch. J Am Chem Soc 130(16):5400–5401PubMedCrossRefGoogle Scholar
  59. 59.
    Nawarathne IN, Walker KD (2010) Point mutations (Q19P and N23K) increase the operational solubility of a 2alpha-O-benzoyltransferase that conveys various acyl groups from CoA to a taxane acceptor. J Nat Prod 73(2):151–159PubMedCrossRefGoogle Scholar
  60. 60.
    Nguyen KT, Ritz D, Gu JQ, Alexander D, Chu M, Miao V, Brian P, Baltz RH (2006) Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci USA 103(46):17462–17467PubMedCrossRefGoogle Scholar
  61. 61.
    O’Hare HM, Baerga-Ortiz A, Popovic B, Spencer JB, Leadlay PF (2006) High-throughput mutagenesis to evaluate models of stereochemical control in ketoreductase domains from the erythromycin polyketide synthase. Chem Biol 13(3):287–296PubMedCrossRefGoogle Scholar
  62. 62.
    Patel H, Walsh CT (2001) In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of Pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry 40(30):9023–9031PubMedCrossRefGoogle Scholar
  63. 63.
    Peters RJ, Croteau RB (2003) Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1, 8-cineole, and sabinene synthases. Arch Biochem Biophys 417(2):203–211PubMedCrossRefGoogle Scholar
  64. 64.
    Power P, Dunne T, Murphy B, Nic Lochlainn L, Rai D, Borissow C, Rawlings B, Caffrey P (2008) Engineered synthesis of 7-oxo- and 15-deoxy-15-oxo-amphotericins: insights into structure-activity relationships in polyene antibiotics. Chem Biol 15(1):78–86PubMedCrossRefGoogle Scholar
  65. 65.
    Ramos A, Olano C, Brana AF, Mendez C, Salas JA (2009) Modulation of deoxysugar transfer by the elloramycin glycosyltransferase ElmGT through site-directed mutagenesis. J Bacteriol 191(8):2871–2875PubMedCrossRefGoogle Scholar
  66. 66.
    Reeves CD, Murli S, Ashley GW, Piagentini M, Hutchinson CR, McDaniel R (2001) Alteration of the substrate specificity of a modular polyketide synthase acyltransferase domain through site-specific mutations. Biochemistry 40(51):15464–15470PubMedCrossRefGoogle Scholar
  67. 67.
    Reid R, Piagentini M, Rodriguez E, Ashley G, Viswanathan N, Carney J, Santi DV, Hutchinson CR, McDaniel R (2003) A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42(1):72–79PubMedCrossRefGoogle Scholar
  68. 68.
    Rix U, Fischer C, Remsing LL, Rohr J (2002) Modification of post-PKS tailoring steps through combinatorial biosynthesis. Nat Prod Rep 19(5):542–580PubMedCrossRefGoogle Scholar
  69. 69.
    Schmidt-Dannert C, Umeno D, Arnold FH (2000) Molecular breeding of carotenoid biosynthetic pathways. Nat Biotechnol 18(7):750–753PubMedCrossRefGoogle Scholar
  70. 70.
    Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20(3):275–287PubMedCrossRefGoogle Scholar
  71. 71.
    Segura M, Lodiero S, Meyer MM, Patel AJ, Matsuda SPT (2002) Directed evolution experiments reveal mutations at cycloartenol synthase residue His477 that dramatically alter catalysis. Org Lett 4(25):4459–4462PubMedCrossRefGoogle Scholar
  72. 72.
    Shishova E, Di Constanzo L, Cane DE, Christianson DW (2007) X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate. Biochemistry 46(7):1941–1951PubMedCrossRefGoogle Scholar
  73. 73.
    Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105(2):715–738PubMedCrossRefGoogle Scholar
  74. 74.
    Stachelhaus T, Marahiel MA (1995) Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J Biol Chem 270(11):6163–6169PubMedCrossRefGoogle Scholar
  75. 75.
    Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6(8):493–505PubMedCrossRefGoogle Scholar
  76. 76.
    Stachelhaus T, Schneider A, Marahiel MA (1995) Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269(5220):69–72PubMedCrossRefGoogle Scholar
  77. 77.
    Starks C, Back K, Chappell J, Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-Aristolochene synthase. Nature 277(5333):1815–1820Google Scholar
  78. 78.
    Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18(4):380–416PubMedCrossRefGoogle Scholar
  79. 79.
    Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis) - Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization and bacterial expression of delta-selinene synthase and gamma-humulene synthase. J Biol Chem 273(4):2078–2089PubMedCrossRefGoogle Scholar
  80. 80.
    Tang Y, Tsai SC, Khosla C (2003) Polyketide chain length control by chain length factor. J Am Chem Soc 125(42):12708–12709PubMedCrossRefGoogle Scholar
  81. 81.
    Uguru G, Milne C, Borg M, Flett F, Smith CP, Micklefield J (2004) Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. J Am Chem Soc 126(16):5032–5033PubMedCrossRefGoogle Scholar
  82. 82.
    Umeno D, Arnold FH (2004) Evolution of a pathway to novel long-chain carotenoids. J Bacteriol 186(5):1531–1536PubMedCrossRefGoogle Scholar
  83. 83.
    Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol R 69(1):51–78CrossRefGoogle Scholar
  84. 84.
    Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28(4):663–692PubMedCrossRefGoogle Scholar
  85. 85.
    Wang C-W, Liao JC (2001) Alteration of product specificity of Rhodobacter sphaeroides phytoene desaturase by directed evolution. J Biol Chem 276(44):41161–41164PubMedCrossRefGoogle Scholar
  86. 86.
    Wang C-W, Oh M-K, Liao JC (2000) Directed evolution of metabolically engineered Escherichia coli for carotenoid production. Biotechnol Prog 16(6):922–926PubMedCrossRefGoogle Scholar
  87. 87.
    Watanabe K, Hotta K, Praseuth AP, Koketsu K, Migita A, Boddy CN, Wang CC, Oguri H, Oikawa H (2006) Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nat Chem Biol 2(8):423–428PubMedCrossRefGoogle Scholar
  88. 88.
    Watanabe K, Hotta K, Praseuth AP, Searcey M, Wang CCC, Oguri H, Oikawa H (2009) Rationally engineered total biosynthesis of a synthetic analogue of a natural quinomycin depsipeptide in Escherichia coli. ChemBioChem 10(12):1965–1968PubMedCrossRefGoogle Scholar
  89. 89.
    Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3(12):925–936PubMedCrossRefGoogle Scholar
  90. 90.
    Whittington DA, Wise ML, Urbansky M, Coates RM, Croteau RB, Christianson DW (2002) Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Natl Acad Sci USA 99(24):15375–15380PubMedCrossRefGoogle Scholar
  91. 91.
    Wilderman PR, Peters RJ (2007) A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase. J Am Chem Soc 129(51):15736–15737PubMedCrossRefGoogle Scholar
  92. 92.
    Williams GJ, Goff RD, Zhang C, Thorson JS (2008) Optimizing glycosyltransferase specificity via “hot spot” saturation mutagenesis presents a catalyst for novobiocin glycorandomization. Chem Biol 15(4):393–401PubMedCrossRefGoogle Scholar
  93. 93.
    Williams GJ, Zhang C, Thorson JS (2007) Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat Chem Biol 3(10):657–662PubMedCrossRefGoogle Scholar
  94. 94.
    Wu T-K, Wen HY, Chang C-H, Liu Y-T (2008) Protein plasticity: a single amino acid substitution in the Saccharomyces cerevisiae oxidosqualene-lanosterol cyclase generates Protosta-13(17), 24-dien-3b-ol, a rearrangement product. Org Lett 10(12):2529–2532PubMedCrossRefGoogle Scholar
  95. 95.
    Xiang H, Tschirret-Guth RA, Ortiz De Montellano PR (2000) An A245T mutation conveys on cytochrome P450eryF the ability to oxidize alternative substrates. J Biol Chem 275(46):35999–36006PubMedCrossRefGoogle Scholar
  96. 96.
    Xie XK, Watanabe K, Wojcicki WA, Wang CCC, Tang Y (2006) Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem Biol 13:1161–1169PubMedCrossRefGoogle Scholar
  97. 97.
    Xu M, Wilderman PR, Peters RJ (2007) Following evolution’s lead to a single residue switch for diterpene synthase product outcome. Proc Natl Acad Sci USA 104(18):7397–7401PubMedCrossRefGoogle Scholar
  98. 98.
    Yang L, Stöckigt J (2010) Trends for diverse production strategies of plant medicinal alkaloids. Nat Prod Rep 27(10):1469–1479PubMedCrossRefGoogle Scholar
  99. 99.
    Yoshikuni Y, Dietrich FA, Nowroozi FF, Babbitt PC, Keasling JD (2008) Redesigning enzymes based on adaptive evolution for optimal function in synthetic metabolic pathways. Chem Biol 15(6):607–618PubMedCrossRefGoogle Scholar
  100. 100.
    Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440(7087):1078–1082PubMedCrossRefGoogle Scholar
  101. 101.
    Yoshikuni Y, Martin VJJ, Ferrin TE, Keasling JD (2006) Engineering cotton (+)-d-cadinene synthase to an altered function: germacrene d-4-ol synthase. Chem Biol 13(1):91–98PubMedCrossRefGoogle Scholar
  102. 102.
    Zhou H, Xie X, Tang Y (2008) Engineering natural products using combinatorial biosynthesis and biocatalysis. Curr Opin Biotechnol 19(6):590–596PubMedCrossRefGoogle Scholar
  103. 103.
    Zocher G, Richter ME, Mueller U, Hertweck C (2011) Structural fine-tuning of a multifunctional cytochrome P450 monooxygenase. J Am Chem Soc 133(7):2292–2302PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • Angelica O. Zabala
    • 1
  • Ralph A. Cacho
    • 1
  • Yi Tang
    • 1
    • 2
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations