Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery

Abstract

The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km2 of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abbasnezhad H, Gray MR, Foght JM (2008) Two different mechanisms for adhesion of gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface. Colloid Surf B Biointerfaces 62(1):36–41

    CAS  Article  Google Scholar 

  2. 2.

    Abu-Ruwaida AS, Banat IM, Haditiro S, Salem A, Kadri M (1991) Isolation of biosurfactant-producing bacteria: product characterization and evaluation. Acta Biotechnol 11(4):315–324

    CAS  Article  Google Scholar 

  3. 3.

    Adams J, Riediger C, Fowler M, Larter S (2006) Thermal controls on biodegradation around the Peace River Tar Sands: paleo-pasteurization to the west. J Geochem Explor 89(1–3):1–4

    CAS  Article  Google Scholar 

  4. 4.

    Agrawal A, Lal B (2009) Rapid detection and quantification of bisulfite reductase genes in oil field samples using real-time PCR. FEMS Microbiol Ecol 69(2):301–312

    PubMed  CAS  Article  Google Scholar 

  5. 5.

    Aitken CM, Jones DM, Larter SR (2004) Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431(7006):291–294

    PubMed  CAS  Article  Google Scholar 

  6. 6.

    Almeida PF, Moreira RS, Almeida RCC, Guimarães AK, Carvalho AS, Quintella C, Esperidiã MCA, Taft CA (2004) Selection and application of microorganisms to improve oil recovery. Eng Life Sci 4(4):319–325

    CAS  Article  Google Scholar 

  7. 7.

    Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Rechelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbuchel A (2004) Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 50:74–86

    Article  CAS  Google Scholar 

  8. 8.

    Atlas RM (1995) Bioremediation of petroleum pollutants. Int Biodeterior Biodegradation 35(1–3):317–327

    CAS  Article  Google Scholar 

  9. 9.

    Bach H, Berdichevsky Y, Gutnick D (2003) An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Appl Environ Microbiol 69(5):2608–2615

    PubMed  CAS  Article  Google Scholar 

  10. 10.

    Bailey SA, Bryant RS, Duncan KE (2000) Design of a novel alkaliphilic bacterial system for triggering biopolymer gels. J Ind Microbiol Biotechnol 24(6):389–395

    CAS  Article  Google Scholar 

  11. 11.

    Banat IM (1993) The isolation of a thermophilic biosurfactant producing Bacillus sp. Biotechnol Lett 15(6):591–594

    CAS  Article  Google Scholar 

  12. 12.

    Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51(1):1–12

    CAS  Article  Google Scholar 

  13. 13.

    Bao M, Kong X, Jiang G, Wang X, Li X (2009) Laboratory study on activating indigenous microorganisms to enhance oil recovery in Shengli Oilfield. J Pet Sci Eng 66(1–2):42–46

    CAS  Article  Google Scholar 

  14. 14.

    Bastin ES, Greer FE, Merritt CA, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63(1618):21–24

    PubMed  CAS  Article  Google Scholar 

  15. 15.

    Battista J, Earl A, Ml Park (1999) Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol 7(9):362–365

    PubMed  CAS  Article  Google Scholar 

  16. 16.

    Blasius M, Sommer S, Hübscher U (2008) Deinococcus radiodurans: what belongs to the survival kit? Crit Rev Biochem Mol 43(3):221–238

    CAS  Article  Google Scholar 

  17. 17.

    Bordenave S, Kostenko V, Dutkoski M, Grigoryan A, Martinuzzi RJ, Voordouw G (2010) Relation between the activity of anaerobic microbial populations in oil sands tailings ponds and the sedimentation of tailings. Chemosphere 81(5):663–668

    PubMed  CAS  Article  Google Scholar 

  18. 18.

    Bordoloi NK, Konwar BK (2008) Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloid Surf B Biointerfaces 63(1):73–82

    CAS  Article  Google Scholar 

  19. 19.

    Brown LR (2010) Microbial enhanced oil recovery (MEOR). Curr Opin Microbiol 13(3):316–320

    PubMed  CAS  Article  Google Scholar 

  20. 20.

    Carrigy MA, Kramers JW (1973) Guide to the Athabasca oil sands area. Alberta Research. Available via http://www.ags.gov.ab.ca/publications/inf/pdf/inf_065.pdf. Accessed 15 May 2011

  21. 21.

    Chalaturnyk RJ, Scott JD, Ozum B (2002) Management of oil sands tailings. Petrol Sci Technol 20(9–10):1025–1046

    CAS  Article  Google Scholar 

  22. 22.

    Chamanrokh P, Assadi MM, Noohi A, Yahyai S (2008) Emulsan analysis produced by locally isolated bacteria and Acinetobacter calcoaceticus RAG-1. Iran J Environ Health Sci Eng 5(2):101–108

    CAS  Google Scholar 

  23. 23.

    Czarnecki J, Radoev B, Schramm LL, Slavchev R (2005) On the nature of Athabasca Oil Sands. Adv Colloid Interface Sci 114:53–60

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Dahle H, Garshol F, Madsen M, Birkeland N (2008) Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie Van Leeuwenhoeck 93(1–2):37–49

    Article  Google Scholar 

  25. 25.

    Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Process Biochem 42(8):1191–1199

    CAS  Article  Google Scholar 

  26. 26.

    Davidova I, Hicks MS, Fedorak PM, Suflita JM (2001) The influence of nitrate on microbial processes in oil industry production waters. J Ind Microbiol Biotechnol 27(2):80–86

    PubMed  CAS  Article  Google Scholar 

  27. 27.

    Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon JG (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62(6):1908–1912

    PubMed  CAS  Google Scholar 

  28. 28.

    Dolfing J, Larter SR, Head IM (2008) Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J 2(4):442–452

    PubMed  CAS  Article  Google Scholar 

  29. 29.

    Doronbantu LS, Yeung AKC, Foght JM, Gray MR (2004) Stabilization of oil-water emulsions by hydrophobic bacteria. Appl Environ Microbiol 70(10):6333–6336

    Article  CAS  Google Scholar 

  30. 30.

    Droitsch D, Huot M, Partington P (2010) Canadian oil sands and greenhouse gas emissions: the facts in perspective. The Pembina Institute. Available via http://pubs.pembina.org/reports/briefingnoteosghg.pdf. Accessed 15 May 2011

  31. 31.

    Fedorak PM, Coy DL, Dudas MJ, Simpson MJ, Renneberg AJ, MacKinnon MD (2003) Microbially-mediated fugitive gas production from oil sands tailings and increased tailings densification rates. J Environ Eng Sci J 2(3):199–211

    CAS  Article  Google Scholar 

  32. 32.

    Fedorak PM, Coy DL, Salloum MJ, Dudas MJ (2002) Methanogenic potential of tailings samples from oil sands extraction plants. Can J Microbiol 48(1):21–33

    PubMed  CAS  Article  Google Scholar 

  33. 33.

    Foght JM, Fedorak PM, Westlake DWS, Boerger HJ (1985) Microbial content and metabolic activities in the Syncrude tailings pond. AOSTRA J Res 1:139–146

    CAS  Google Scholar 

  34. 34.

    Gorna H, Lawniczak L, Zgola-Grzeskowiak A, Kaczorek E (2011) Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. Bioresource Technol 102:3028–3033

    CAS  Article  Google Scholar 

  35. 35.

    Grabowski A, Nercessian O, Fayolle F, Blanchet D, Jeanthon C (2005) Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS Microbiol Ecol 54(3):427–443

    PubMed  CAS  Article  Google Scholar 

  36. 36.

    Greene EA, Voordouw G (2004) Microbial community dynamics during bioremediation of hydrocarbons. Biodegradation Bioremediation 2:19–36

    CAS  Google Scholar 

  37. 37.

    Gupta A, Chauhan A, Kopelevich DI (2008) Molecular modeling of surfactant covered oil-water interfaces: dynamics, microstructure, and barrier for mass transport. J Chem Phys 128(23):234709

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Haddad NIA, Liu XY, Yang SZ, Mu BZ (2008) Surfactin isoforms from Bacillus subtilis HSO121: separation and characterization. Protein Peptide Lett 15(3):265–269

    CAS  Article  Google Scholar 

  39. 39.

    Hadwin AKM, Del Rio LF, Pinto LJ, Painter M, Routledge R, Moore MM (2006) Microbial communities in wetlands of the Athabasca oil sands: genetic and metabolic characterization. FEMS Microbiol Ecol 55(1):68–78

    PubMed  CAS  Article  Google Scholar 

  40. 40.

    Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426(6964):344–352

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Head IM, Larter SR, Gray ND, Sherry A, Adams JJ, Aitken CM, Jones DM, Rowan AK, Huang H, Röling WFM (2010) Hydrocarbon degradation in petroleum reservoirs. Springer-Verlag, Berlin

    Google Scholar 

  42. 42.

    Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, Debont JAM (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12(10):409–415

    CAS  Article  Google Scholar 

  43. 43.

    Holowenko FM, MacKinnon MD, Fedorak PM (2000) Methanogens and sulfate-reducing bacteria in oil sands fine tailings waste. Can J Microbiol 46:927–937

    PubMed  CAS  Article  Google Scholar 

  44. 44.

    Huang HP, Bennett B, Oldenburg T, Adams J, Larter SR (2008) Geological controls on the origin of heavy oil and oil sands and their impacts on in situ recovery. J Can Pet Technol 47(4):37–45

    CAS  Google Scholar 

  45. 45.

    Huang HP, Larter SR, Bowler BFJ, Oldenburg TBP (2004) A dynamic biodegradation model suggested by petroleum compositional gradients within reservoir columns from the Liaohe Basin, NE China. Org Geochem 35(3):299–316

    CAS  Article  Google Scholar 

  46. 46.

    Hubert C, Voordouw G (2007) Oil field souring control by nitrate-reducing Sulfurospirillum spp that outcompete sulfate-reducing bacteria for organic electron donors. Appl Environ Microbiol 73(8):2644–2652

    PubMed  CAS  Article  Google Scholar 

  47. 47.

    Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15(2):56–61

    PubMed  Article  Google Scholar 

  48. 48.

    Hulecki JC, Foght JM, Gray MR, Fedorak PM (2009) Sulfide persistence in oil field waters amended with nitrate and acetate. J Ind Microbiol Biot 36(12):1499–1511

    CAS  Article  Google Scholar 

  49. 49.

    Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181(18):5693–5700

    PubMed  CAS  Google Scholar 

  50. 50.

    Kang Z, Yeung A, Foghtb JM, Murray RG (2008) Hydrophobic bacteria at the hexadecane–water interface: examination of micrometre-scale interfacial properties. Colloid Surf B Biointerfaces 67(1):59–66

    CAS  Article  Google Scholar 

  51. 51.

    Kaster KM, Bonaunet K, Berland H, Kjeilen-Eilertsen G, Brakstad OG (2009) Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie Van Leeuwenhoek 96(4):423–439

    PubMed  Article  Google Scholar 

  52. 52.

    Kato T, Haruki M, Imanaka T, Morikawa M, Kanaya S (2001) Isolation and characterization of psychrotrophic bacteria from oil-reservoir water and oil sands. Appl Microbiol Biot 55(6):794–800

    CAS  Article  Google Scholar 

  53. 53.

    Khachatoorian R, Petrisor IG, Kwan CC, Yen TF (2003) Biopolymer plugging effect: laboratory-pressurized pumping flow studies. J Pet Sci Eng 38(1–2):13–21

    CAS  Article  Google Scholar 

  54. 54.

    Khire JM (2010) Bacterial biosurfactants and their role in microbial enhanced oil recovery (MEOR). Biosurfactants 672:146–157

    CAS  Article  Google Scholar 

  55. 55.

    Khire JM, Khan MI (1994) Microbially enhanced oil recovery (MEOR). Part 1. Importance and mechanism of MEOR. Enzyme Microb Technol 16(2):170–172

    CAS  Article  Google Scholar 

  56. 56.

    Khire JM, Khan MI (1994) Microbially enhanced oil recovery (MEOR). Part 2. Microbes and the subsurface environment for MEOR. Enzyme Microb Technol 16(3):258–259

    Article  Google Scholar 

  57. 57.

    Kieboom J, Dennis JJ, de Bont JAM, Zylstra GJ (1998) Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem 273(1):85–91

    PubMed  CAS  Article  Google Scholar 

  58. 58.

    Kim P, Kim JH (2005) Characterization of a novel lipopolysaccharide biosurfactant from Klebsiella oxitoca. Biotechnol Bioprocess Eng 10(6):494–499

    CAS  Article  Google Scholar 

  59. 59.

    Kowalewski E, Rueslatten I, Steen KH, Bodtker G, Torsaeter O (2006) Microbial improved oil recovery-bacterial induced wettability and interfacial tension effects on oil production. J Pet Sci Eng 52(1–4):275–286

    CAS  Article  Google Scholar 

  60. 60.

    Kumaraswamy R, Ebert S, Gray M, Fedorak P, Foght J (2011) Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production. Appl Microbiol Biotechnol 89(6):2027–2038

    PubMed  CAS  Article  Google Scholar 

  61. 61.

    Larter S, Huang H, Adams J, Bennett B, Jokanola O, Oldenburg T, Jones M, Head I, Riediger C, Fowler M (2006) The controls on the composition of biodegraded oils in the deep subsurface: part II—geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction. AAPG Bull 90(6):921–938

    CAS  Article  Google Scholar 

  62. 62.

    Larter S, Wilhelms A, Head I, Koopmans M, Aplin A, Di Primio R, Zwach C, Erdmann M, Telnaes N (2003) The controls on the composition of biodegraded oils in the deep subsurface: part 1—biodegradation rates in petroleum reservoirs. Org Geochem 34(4):601–613

    CAS  Article  Google Scholar 

  63. 63.

    Lazar I, Petrisor IG, Yen TF (2007) Microbial enhanced oil recovery (MEOR). Pet Sci Technol 25(11):1353–1366

    CAS  Article  Google Scholar 

  64. 64.

    Lee EGH, Walden CC (1969) Biosynthesis of pyocyanine by a paraffin hydrocarbon-oxidizing strain of Pseudomonas aeruginosa. Appl Microbiol 17(4):520–523

    PubMed  CAS  Google Scholar 

  65. 65.

    Li H, Yang SZ, Mu BZ, Rong ZF, Zhang J (2006) Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiol Lett 257(1):92–98

    PubMed  CAS  Article  Google Scholar 

  66. 66.

    Li Y, Haddad NIA, Yang S, Mu B (2008) Variants of lipopeptides produced by Bacillus licheniformis HSN221 in different medium components evaluated by a rapid method ESI-MS. Int J Pept Res Ther 14(3):229–235

    CAS  Article  Google Scholar 

  67. 67.

    MacKenzie MD, Quideau SA (2010) Microbial community structure and nutrient availability in oil sands reclaimed boreal soils. Appl Soil Ecol 44:32–41

    Article  Google Scholar 

  68. 68.

    Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum resevoirs. Antonie Van Leeuwenhoek 77:103–116

    PubMed  CAS  Article  Google Scholar 

  69. 69.

    Makkar RS, Cameotra SS (1998) Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20(1):48–52

    CAS  Article  Google Scholar 

  70. 70.

    Makkar RS, Cameotra SS (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc 74(7):887–889

    CAS  Article  Google Scholar 

  71. 71.

    Mardanov AV, Gumerov VM, Beletsky AV, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG (2010) Characteristic of biodiversity of thermophilic microbial community by parallel pyrosequencing method. Dokl Biochem Biophys 432(1):110–113

    PubMed  CAS  Article  Google Scholar 

  72. 72.

    Martens CS, Berner RA (1974) Methane production in interstitial waters of sulfate-depleted marine sediments. Science 185(4157):1167–1169

    PubMed  CAS  Article  Google Scholar 

  73. 73.

    Mattimore V, Battista J (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178(3):633–637

    PubMed  CAS  Google Scholar 

  74. 74.

    McCammick EM, Gomase VS, McGenity TJ, Timson DJ, Hallsworth JE (2010) Water-hydrophobic compound interactions with the microbial cell. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 1451–1466

    Google Scholar 

  75. 75.

    McCulloch M, Raynolds M, Wong R (2006) Carbon neutral 2020: a leadership opportunity in Canada’s oil sands. The Pembina Institute. Available via http://pubs.pembina.org/reports/CarbonNeutral2020_Final.pdf. Accessed 15 May 2011

  76. 76.

    McInerney MJ, Javaheri M, Nagle DP (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain Jf-2. J Ind Microbiol 5(2–3):95–101

    PubMed  CAS  Article  Google Scholar 

  77. 77.

    Momeni D, Yen TF (1990) Economics in microbial enhancedoil recovery. In: Yen TF (ed) Microbial enhanced oil recovery: principle and practice. CRC, Boca Raton, pp 165–171

    Google Scholar 

  78. 78.

    Mossop GD (1980) Geology of the Athabasca oil sands. Science 207(4427):145–152

    PubMed  CAS  Article  Google Scholar 

  79. 79.

    Nemati M, Jenneman GE, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74(5):424–434

    PubMed  CAS  Article  Google Scholar 

  80. 80.

    Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643

    PubMed  CAS  Article  Google Scholar 

  81. 81.

    Okpokwasili GW, Ibiene AA (2006) Enhancement of recovery of residual oil using a biosurfactant slug. Afr J Biotechnol 5(5):453–456

    CAS  Google Scholar 

  82. 82.

    Paula S, Volkov AG, VanHoek AN, Haines TH, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70(1):339–348

    PubMed  CAS  Article  Google Scholar 

  83. 83.

    Penner TJ, Foght JM (2010) Mature fine tailings from oil sands processing harbour diverse methanogenic communities. Can J Microbiol 56(6):459–470

    PubMed  CAS  Article  Google Scholar 

  84. 84.

    Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb J, DeLong EF, Keeler SJ (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11(1):176–187

    PubMed  CAS  Article  Google Scholar 

  85. 85.

    Pikuta EV, Hoover RB (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    PubMed  CAS  Article  Google Scholar 

  86. 86.

    Pollack GH, Figueroa X, Zhao Q (2009) Molecules, water, and radiant energy: new clues for the origin of life. Int J Mol Sci 10:1419–1429

    PubMed  CAS  Article  Google Scholar 

  87. 87.

    Pornsunthorntawee O, Arttaweeporn N, Paisanjit S, Somboonthanate P, Abe M, Rujiravanit R, Chavadej S (2008) Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochem Eng J 42(2):172–179

    CAS  Article  Google Scholar 

  88. 88.

    Pruthi V, Cameotra SS (1997) Production and properties of a biosurfactant synthesized by Arthrobacter protophormiae—an Antarctic strain. World J Microbiol Biotechnol 13(1):137–139

    CAS  Article  Google Scholar 

  89. 89.

    Pruthi V, Cameotra SS (1997) Production of a biosurfactant exhibiting excellent emulsification and surface active properties by Serratia marcescens. World J Microbiol Biotechnol 13(1):133–135

    CAS  Article  Google Scholar 

  90. 90.

    Rainey FA, Ray K, Ferreira M, Gatz BZ, Fernanda Nobre M, Bagaley D, Rash BA, Park M, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kampfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71(9):5225–5235

    PubMed  CAS  Article  Google Scholar 

  91. 91.

    Ram S, Saraswat DK, Narayan KA (1990) Spectroscopic studies of Athabasca oil sands. Fuel 69(4):512–515

    CAS  Article  Google Scholar 

  92. 92.

    Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbio 56:743–768

    CAS  Article  Google Scholar 

  93. 93.

    Ramos-Padron E, Bordenave S, Lin S, Bhaskar IM, Dong X, Sensen CW, Fournier J, Voordouw G, Gieg LM (2011) Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ Sci Technol 45(2):439–446

    PubMed  CAS  Article  Google Scholar 

  94. 94.

    Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58(4):1284–1291

    PubMed  CAS  Google Scholar 

  95. 95.

    Rock GJ (2003) The iron geochemistry of mudstones and metapelites. Dissertation, University of Newcastle upon Tyne

  96. 96.

    Ross N, Villemur R, Deschenes L, Samson R (2001) Clogging of a limestone fracture by stimulating groundwater microbes. Water Res 35(8):2029–2037

    PubMed  CAS  Article  Google Scholar 

  97. 97.

    Salloum MJ, Dudas MJ, Fedorak PM (2002) Microbial reduction of amended sulfate in anaerobic mature fine tailings from oil sand. Waste Manag Res 20(2):162–171

    PubMed  CAS  Article  Google Scholar 

  98. 98.

    Schaller KD, Fox SL, Bruhn DF, Noah KS, Bala GA (2004) Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery. Appl Biochem Biotechnol 113:827–836

    PubMed  Article  Google Scholar 

  99. 99.

    Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust 34(6):714–724

    CAS  Article  Google Scholar 

  100. 100.

    Severanc MM, Larock PA (1973) Thermal death of a hydrocarbon bacterium in a non-aqueous fluid. J Bacteriol 116(3):1287–1292

    Google Scholar 

  101. 101.

    Shabtai Y (1991) Isolation and characterization of a lipolytic bacterium capable of growing in a low-water-content oil-water emulsion. Appl Environ Microbiol 57(6):1740–1745

    PubMed  CAS  Google Scholar 

  102. 102.

    Shabtai Y, Daya-Mishne N (1992) Production, purification and properties of a lipase from a bacterium (Psudomonas aeruginosa YS-7) capable of growing in water-restricted environments. Appl Environ Microbiol 58(1):174–180

    PubMed  CAS  Google Scholar 

  103. 103.

    Shavandi M, Mohebali G, Haddadi A, Shakarami H, Nuhi A (2011) Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodoccus sp. strain TA6. Colloid Surf B Biointerfaces 82:477–482

    CAS  Article  Google Scholar 

  104. 104.

    Sheehy AJ (1991) Microbial physiology and enhanced oil-recovery. Dev Petr Sci 31:37–44

    Article  Google Scholar 

  105. 105.

    Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    PubMed  CAS  Google Scholar 

  106. 106.

    Sobolewski A (1997) Microbial distributions in process-affected aquatic ecosystems. Consultants report submitted to Alberta Oil Sand Technology Research Authority. Calgary, Alberta

  107. 107.

    Sobolewski A (1992) The microbial characteristics of oil sands tailings sludge. Consultants report submitted to Alberta Oil Sand Technology Research Authority. Calgary, Alberta

  108. 108.

    Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial enhanced oil recovery using sand pack column. J Microbiol Methods 75(2):225–230

    PubMed  CAS  Article  Google Scholar 

  109. 109.

    Takada-Hoshino Y, Matsumoto N (2004) An improved DNA extraction method using skim milk for soils that strongly adsorb DNA. Microbes Environ 19(1):13–19

    Article  Google Scholar 

  110. 110.

    Takamura K (1982) Microscopic structure of Athabasca oil sand. Can J Chem Eng 60(4):538–545

    CAS  Article  Google Scholar 

  111. 111.

    Tango MSA, Islam MR (2002) Potential of extremophiles for biotechnological and petroleum applications. Energy Source 24(6):543–559

    CAS  Google Scholar 

  112. 112.

    Tanner RS (1989) Monitoring sulfate-reducing bacteria—comparison of enumeration media. J Microbiol Methods 10(2):83–90

    Article  Google Scholar 

  113. 113.

    Thomas CP, Bala GA, Duvall ML (1993) Surfactant-based enhanced oil recovery mediated by naturally occurring microorganisms. Soc Pet Eng Reservoir Eng 11:285–291

    Google Scholar 

  114. 114.

    van der Kraan GM, Bruining J, Lomans BP, van Loosdrecht MCM, Muyzer G (2010) Microbial diversity of an oil-water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments. FEMS Microbiol Ecol 71:428–443

    PubMed  Article  CAS  Google Scholar 

  115. 115.

    Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol R 67(4):503–549

    Article  CAS  Google Scholar 

  116. 116.

    Vasileva-Tonkova E, Gesheva V (2007) Biosurfactant production by antarctic facultative anaerobe Pantoea sp.during growth on hydrocarbons. Curr Microbiol 54(2):136–141

    PubMed  CAS  Article  Google Scholar 

  117. 117.

    Verma SP, Rastogi A (1990) Organic pesticides modify lipid–lipid and lipid-protein domains in model membranes—a laser Raman study. Biochem Biophys Acta 1027(1):59–64

    PubMed  CAS  Article  Google Scholar 

  118. 118.

    Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62(5):1623–1629

    PubMed  CAS  Google Scholar 

  119. 119.

    Voordouw G, Voordouw JK, Jack TR, Foght J, Fedorak PM, Westlake DWS (1992) Identification of distinct communities of sulfate-reducing bacteria in oil-fields by reverse sample genome probing. Appl Environ Microbiol 58(11):3542–3552

    PubMed  CAS  Google Scholar 

  120. 120.

    Voordouw G, Voordouw JK, Karkhoffschweizer RR, Fedorak PM, Westlake DWS (1991) Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfate-reducing bacteria in oil field samples. Appl Environ Microbiol 57(11):3070–3078

    PubMed  CAS  Google Scholar 

  121. 121.

    Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    PubMed  CAS  Article  Google Scholar 

  122. 122.

    Wang J, Ma T, Zhao L, Lv J, Li G, Zhang H, Zhao B, Liang F, Liu R (2008) Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery. J Ind Microbiol Biot 35(6):619–628

    CAS  Article  Google Scholar 

  123. 123.

    Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98(4):842–853

    PubMed  CAS  Article  Google Scholar 

  124. 124.

    Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276

    PubMed  CAS  Article  Google Scholar 

  125. 125.

    Wilhelms A, Larter SR, Head I, Farrimond P (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411(6841):1034–1037

    PubMed  CAS  Article  Google Scholar 

  126. 126.

    Winfrey MR, Ward DM (1983) Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol 45(1):193–199

    PubMed  CAS  Google Scholar 

  127. 127.

    Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99(5):1157–1164

    PubMed  CAS  Article  Google Scholar 

  128. 128.

    Wyndham RC, Costerton JW (1981) Heterotrophic potentials and hydrocarbon biodegradation potentials of sediment microorganisms within the Athabasca oil sands deposit. Appl Environ Microbiol 41(3):783–790

    PubMed  CAS  Google Scholar 

  129. 129.

    Wyndham RC, Costerton JW (1981) In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands deposit. Appl Environ Microbiol 41(3):791–800

    PubMed  CAS  Google Scholar 

  130. 130.

    Yakimov MM, Amro MM, Bock M, Boseker K, Fredrickson HL, Kessel DG, Timmis KN (1997) The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Pet Sci Eng 18(1–2):147–160

    CAS  Article  Google Scholar 

  131. 131.

    Yamane K, Hattori Y, Ohtagaki H, Fujiwara K (2011) Microbial diversity with dominance of 16S rRNA gene sequences with high GC contents at 74°C and 98°C subsurface crude oil deposits in Japan. FEMS Microbiol Ecol 76(2):220–235

    Google Scholar 

  132. 132.

    Yamane K, Maki H, Nakayama T, Nakajima T, Nomura N, Uchiyama H, Kitaoka M (2008) Diversity and similarity of microbial communities in petroleum crude oils produced in Asia. Biosci Biotech Biochem 72(11):2831–2839

    CAS  Article  Google Scholar 

  133. 133.

    Yoon S, Bhatt SD, Lee W, Lee HY, Jeong SY, Baeg J, Lee CW (2009) Separation and characterization of bitumen from Athabasca oil sands. Korean J Chem Eng 26(1):64–71

    CAS  Article  Google Scholar 

  134. 134.

    Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251

    PubMed  CAS  Article  Google Scholar 

  135. 135.

    Youssef N, Simpson DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73(4):1239–1247

    PubMed  CAS  Article  Google Scholar 

  136. 136.

    Zajic JE, Cooper DG, Marshall JA, Gerson DF (1981) Microstructure of Athabasca bituminous sand by freeze-fracture preparation and transmission electron microscopy. Fuel 60(7):619–623

    Article  Google Scholar 

  137. 137.

    Zhou SQ, Huang HP, Liu YM (2008) Biodegradation and origin of oil sands in the Western Canada sedimentary basin. Petrol Sci 5(2):87–94

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Research by JTT is supported by the Discovery Program of NSERC (Canada).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. T. Trevors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Harner, N.K., Richardson, T.L., Thompson, K.A. et al. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery. J Ind Microbiol Biotechnol 38, 1761 (2011). https://doi.org/10.1007/s10295-011-1024-6

Download citation

Keywords

  • Bacteria
  • Bitumen
  • Biosurfactant
  • Degradation
  • Environmental
  • Methods
  • Oil sands
  • Water stress