Skip to main content
Log in

Detection and identification of microorganisms in wine: a review of molecular techniques

  • Review
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The microbial ecology of wine is complex. Microbes can play both positive and negative roles in the quality of the final product. Due to this impact, the microbial ecology of wine has been well studied. Traditional indirect methods, such as plating, have largely been replaced by a number of molecular methods. These methods are typically either indirect methods used for identification of cultured organisms, or direct methods used to profile whole populations or identify specific microbes in a mixed population. These molecular methods offer a number of advantages over traditional methods including speed and precision. This review will examine both direct and indirect molecular methods, provide examples of their impact on the study of the microbial ecology of wine, and also discuss their strengths and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arias C, Burns JK, Friedrich LM, Goodrich RM, Parish ME (2002) Yeast species associated with orange juice: evaluation of different identification methods. Appl Environ Microbiol 68:1955–1961. doi:10.1128/AEM.68.4.1955-1961.2002

    Article  PubMed  CAS  Google Scholar 

  2. Attfield PV, Kletsas S, Veal DA, van Rooijen R, Bell PJ (2000) Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts. J Appl Microbiol 89:207–214. doi:10.1046/j.1365-2672.2000.01100.x

    Article  PubMed  CAS  Google Scholar 

  3. Ayoub MJ, Legras JL, Saliba R, Gaillardin C (2006) Application of multi locus sequence typing to the analysis of the biodiversity of indigenous Saccharomyces cerevisiae wine yeasts from Lebanon. J Appl Microbiol 100:699–711. doi:10.1111/j.1365-2672.2006.02817.x

    Article  PubMed  CAS  Google Scholar 

  4. Azumi M, Goto-Yamamoto N (2001) AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering. Yeast 18:1145–1154. doi:10.1002/yea.767

    Article  PubMed  CAS  Google Scholar 

  5. Baleiras Couto MM, Reizinho RG, Duarte FL (2005) Partial 26S rDNA restriction analysis as a tool to characterize non-Saccharomyces yeasts present during red wine fermentations. Int J Food Microbiol 102:49–56. doi:10.1016/j.ijfoodmicro.2005.01.005

    Article  PubMed  CAS  Google Scholar 

  6. Bartowsky EJ, Henschke PA (1999) Use of a polymerase chain reaction for specific detection of the malolactic fermentation bacterium Oenococcus oeni (formerly Leuconostoc oenos) in grape juice and wine sample. Aust J Grape Wine Res 5:39–44. doi:10.1111/j.1755-0238.1999.tb00150.x

    Article  CAS  Google Scholar 

  7. Bilhere E, Lucas PM, Claisse O, Lonvaud-Funel A (2009) Multilocus sequence typing of Oenococcus oeni: detection of two subpopulations shaped by intergenic recombination. Appl Environ Microbiol 75:1291–1300. doi:10.1128/AEM.02563-08

    Article  PubMed  CAS  Google Scholar 

  8. Blasco L, Ferrer S, Pardo I (2003) Development of specific fluorescent oligonucleotide probes for in situ identification of wine lactic acid bacteria. FEMS Microbiol Lett 225:115–123. doi:10.1016/S0378-1097(03)00501-9

    Article  PubMed  CAS  Google Scholar 

  9. Bleve G, Rizzotti L, Dellaglio F, Torriani S (2003) Development of reverse transcription (RT)-PCR and real-time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products. Appl Environ Microbiol 69:4116–4122. doi:10.1128/AEM.69.7.4116-4122.2003

    Article  PubMed  CAS  Google Scholar 

  10. Borneman AR, Bartowsky EJ, McCarthy J, Chambers PJ (2010) Genotypic diversity in Oenococcus oeni by high-density microarray comparative genome hybridization and whole genome sequencing. Appl Microbiol Biotechnol 86:681–691. doi:10.1007/s00253-009-2425-6

    Article  PubMed  CAS  Google Scholar 

  11. Bottari B, Ercolini D, Gatti M, Neviani E (2009) FISH in food microbiology. In: Liehr T (ed) Fluorescence in situ hybridization (FISH)-application guide. Springer, Berlin Heidelberg New York, pp 395–408

    Chapter  Google Scholar 

  12. Cadez N, Raspor P, deCock AWAM, Boekhout T, Smith MT (2002) Molecular identification and genetic diversity within species of the genera Hanseniaspora and Kloeckera. FEMS Yeast Res 1:279–289. doi:10.1111/j.1567-1364.2002.tb00046.x

    PubMed  CAS  Google Scholar 

  13. Calmin G, Lefort F, Belbahri L (2008) Multi-loci sequence typing (MLST) for two lacto-acid bacteria (LAB) species: Pediococcus parvulus and P. damnosus. Mol Biotechnol 40:170–179. doi:10.1007/s12033-008-9073-4

    Article  PubMed  CAS  Google Scholar 

  14. Cappello MS, Stefani D, Grieco F, Logrieco A, Zapparoli G (2008) Genotyping by amplified fragment length polymorphism and malate metabolism performances of indigenous Oenococcus oeni strains isolated from Primitivo wine. Int J Food Microbiol 127:241–245. doi:10.1016/j.ifoodmicro.2008.07.009

    Article  PubMed  CAS  Google Scholar 

  15. Charpentier C, Colin A, Alais A, Legras J-L (2009) French Jura flor yeasts: genotype and technological diversity. Antione Van Leeuwenhoek 95:263–273. doi:10.1007/s10482-009-9309-8

    Article  Google Scholar 

  16. Ciani M, Mannazzu I, Marinangeli P, Clementi F, Martini A (2004) Contribution of winery-resident Saccharomyces cerevisiae strains to spontaneous grape must fermentation. Antonie Van Leeuwenhoek 85:159–164. doi:10.1023/B:ANTO.0000020284.05802.d7

    Article  PubMed  CAS  Google Scholar 

  17. Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic picroarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4(8):e6669. doi:10.1371/journal.pone.0006669

    Article  PubMed  CAS  Google Scholar 

  18. Cocolin L, Mills DA (2003) Wine yeast inhibition by sulfur dioxide: a comparison of culture-dependent and independent methods. Am J Enol Vitic 54:125–130

    CAS  Google Scholar 

  19. Cocolin L, Rantsiou K, Iacumin L, Zironi R, Comi G (2004) Molecular detection and identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in spoiled wines. Appl Environ Microbiol 70:1347–1355. doi:10.1128/AEM.70.3.1347-1355.2004

    Article  PubMed  CAS  Google Scholar 

  20. Cocolin L, Bisson LF, Mills DA (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol Lett 189(1):81–87. doi:10.1111/j.1574-6968.2000.tb09210.x

    Article  PubMed  CAS  Google Scholar 

  21. Comas-Riu J, Rius N (2009) Flow cytometry applications in the food industry. J Ind Microbiol Biotechnol 36(8):999–1011. doi:10.1007/s10295-009-0608-x

    Article  PubMed  CAS  Google Scholar 

  22. Connell L, Stender H, Edwards CG (2002) Rapid detection and identification of Brettanomyces from winery air samples based on peptide nucleic acid analysis. Am J Enol Vitic 53(4):322–324

    CAS  Google Scholar 

  23. Coton E, Rollan G, Bertrand A, Lonvaud-Funel A (1998) Histamine-producing lactic acid bacteria in wines: early detection, frequency and distribution. Am J Enol Vitic 49(2):199–204

    CAS  Google Scholar 

  24. Curtin CD, Bellon JR, Henschke PA, Goddon PW, de Barros Lopes MA (2007) Genetic diversity of Dekkera bruxellensis yeasts isolated from Australian wineries. FEMS Yeast Res 7:471–481. doi:10.1111/j.1567-1364.2006.00183.x

    Article  PubMed  CAS  Google Scholar 

  25. Daniel H-M, Meyer W (2003) Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomycetous yeasts. Int J Food Microbiol 86:71–78. doi:10.1016/S0168-1605(03)00248-4

    Article  CAS  Google Scholar 

  26. de las Rivas B, Marcobal A, Munoz R (2004) Allelic diversity and population structure in Oenococcus oeni as determined from sequence analysis of housekeeping genes. Appl Environ Microbiol 70(12):7210–7219. doi:10.1128/AEM.70.12.7210-7219.2004

    Article  CAS  Google Scholar 

  27. Delaherche A, Claisse O, Lonvaud-Funel A (2004) Detection and quantification of Brettanomyces bruxellensis and ‘ropy’ Pediococcus damnosus strains in wine by real-time polymerase chain reaction. J Appl Microbiol 97(5):910–915. doi:10.1111/j.1365-2672.2004.02334.x

    Article  PubMed  CAS  Google Scholar 

  28. du Toit WJ, Pretorius IS, Lonvaud-Funel A (2005) The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J Appl Microbiol 98(4):862–871. doi:10.1111/j.1365-2672.2004.02549.x

    Article  PubMed  CAS  Google Scholar 

  29. Dunn B, Levine RP, Sherlock G (2005) Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures. BMC Genom 6:53. doi:10.1186/1471-2164-6-53

    Article  CAS  Google Scholar 

  30. Ergul A, Kazan K, Aras S, Cevik V, Celik H, Soylemezoglu G (2006) AFLP analysis of genetic variation within the two economically important Anatolian grapevine (Vitis vinifera L.) varietal groups. Genome 49(5):467–475

    Article  PubMed  CAS  Google Scholar 

  31. Esteve-Zarzoso B, Belloch C, Uruburu F, Querol A (1999) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. Int J Syst Bacteriol 49(1):329–337. doi:10.1099/00207713-49-1-329

    Article  PubMed  CAS  Google Scholar 

  32. Esteve-Zarzoso B, Fernandez-Espinar MT, Querol A (2004) Authentication and identification of Saccharomyces cerevisiae ‘flor’ yeast races involved in sherry ageing. Antonie van Leeuwenhoek 85(2):151–158. doi:10.1023/B:ANTO.0000020282.83717.bd

    Article  PubMed  CAS  Google Scholar 

  33. Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Gent 1(1):e5. doi:10.1371/journal.pgen.0010005

    Article  CAS  Google Scholar 

  34. Fernandez-Espinar MT, Esteve-Zarzoso B, Querol A, Barrio E (2000) RFLP analysis of the ribosomal internal transcribed spacers and the 5.8S rRNA gene region of the genus Saccharomyces: a fast method for species identification and the differentiation of flor yeasts. Antonie van Leeuwenhoek 78(1):87–97. doi:10.1023/A:1002741800609

    Article  CAS  Google Scholar 

  35. Fernandez-Espinar MT, Martorell P, de Llanos R, Querol A (2006) Molecular methods to identify and characterize yeasts in foods and beverages. In: Querol A, Fleet GM (eds) The yeast handbook-yeasts in food and beverages. Springer, Berlin Heidelberg New York, pp 55–82. doi:10.1007/978-3-540-28398-0_3

  36. Fernandez-Gonzalez M, Espinosa JC, Ubeda JF, Briones AI (2001) Yeasts present during wine fermentation: comparative analysis of conventional plating and PCR-TTGE. Syst Appl Microbiol 24(4):634–638. doi:10.1078/0723-2020-00072

    Article  PubMed  CAS  Google Scholar 

  37. Fröhlich J, König H, Claus H (2009) Rapid detection and identification with molecular methods. In: König H, Unden G, Fröhlich J (eds) Biology of microorganisms on grapes, in must and in wine. Springer, Berlin Heidelberg New York, pp 429–449. doi:10.1007/978-3-540-85463-0

  38. Fugelsang KC, Zoecklein BW (2003) Population dynamics and effects of Brettanomyces bruxellensis strains on pinot noir (Vitis vinifera L.) wines. Am J Enol Vitic 54:294–300

    CAS  Google Scholar 

  39. Gallego FJ, Perez MA, Nunez Y, Hidalgo P (2005) Comparison of RAPDs, AFLPs and SSR markers for the genetic analysis of yeast strains of Saccharomyces cerevisiae. Food Microbiol 22(6):561–568. doi:10.1016/j.fm.2004.11.019

    Article  CAS  Google Scholar 

  40. Gindreau E, Walling E, Lonvaud-Funel A (2001) Direct polymerase chain reaction detection of ropy Pediococcus damnosus strains in wine. J Appl Microbiol 90:535–542. doi:10.1046/j.1365-2672.2001.01277.x

    Article  PubMed  CAS  Google Scholar 

  41. Giraffa G, D Carminati (2008) Molecular techniques in food fermentation: principals and applications. In: Cocolin L, Ercolini D (eds) Molecular techniques in the microbial ecology of fermented foods. Springer, Berlin Heidelberg New York, pp 162–192. doi:10.1007/978-0-387-74520-6_1

  42. Graca da Silveira M, Vitoria San Romao M, Loureiro-Dias MC, Rombouts FM, Abee T (2002) Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 68(12):6087–6093. doi:10.1128/AEM.68.12.6087-6093.2002

    Article  PubMed  CAS  Google Scholar 

  43. Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor Appl Genet 106(7):1213–1324. doi:10.1007/s00122-002-1170-3

    PubMed  CAS  Google Scholar 

  44. Guillamon JM, Sabate J, Barrio E, Cano J, Querol A (1998) Rapid identification of wine yeast species based on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Arch Microbiol 169(5):387–392. doi:10.1007/s002030050587

    Article  PubMed  CAS  Google Scholar 

  45. Hanna SE, Connor CJ, Wang HH (2005) Real-time polymerase chain reaction for the food microbiologist: technologies, applications, and limitations. J Food Sci 70(3):R49–R53. doi:10.1111/j.1365-2621.2005.tb07149.x

    Article  CAS  Google Scholar 

  46. Hierro N, Gonzalez A, Mas A, Guillamon JM (2006) Diversity and evolution of non-Saccharomyces yeasts populations during wine fermentation: effect of grape ripeness and cold maceration. FEMS Yeast Res 6(1):102–111. doi:10.1111/j.1567-1364.2005.00014.x

    Article  PubMed  CAS  Google Scholar 

  47. Hierro N, Esteve-Zarzoso B, Gonzalez A, Mas A, Guillamon JM (2006) Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection and enumeration of total yeasts in wine. Appl Environ Microbiol 72(11):7148–7155. doi:10.1128/AEM.00388-06

    Article  PubMed  CAS  Google Scholar 

  48. Hirschhäuser S, Fröhlich J, Gneipel A, Schönig I, König H (2005) Fast protocols for the 5S rDNA and ITS-2-based identification of Oenococcus oeni. FEMS Microbiol Lett 244(1):165–171. doi:10.1016/j.femsle.2005.01.033

    Article  PubMed  CAS  Google Scholar 

  49. Ibeas JI, Lozano I, Perdigones F, Jimenez J (1996) Detection of Dekkera-Brettanomyces strains in sherry by a nested PCR method. Appl Environ Microbiol 62(3):998–1003

    PubMed  CAS  Google Scholar 

  50. Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 73(2):169–187. doi:10.1023/A:1000664013047

    Article  PubMed  CAS  Google Scholar 

  51. Kurtzman CP (2006) Yeast species recognition from gene sequence analyses and other molecular methods. Mycoscience 47(2):65–71. doi:10.1007/s10267-006-0280-1

    Article  CAS  Google Scholar 

  52. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73(4):331–371. doi:10.1023/A:1001761008817

    Article  PubMed  CAS  Google Scholar 

  53. Laforgue R, Guérin L, Pernelle JJ, Monnet C, Dupont J, Bouix M (2009) Evaluation of PCR-DGGE methodology to monitor fungal communities on grapes. J Appl Microbiol 107(4):1208–1218. doi:10.1111/j.1365-2672.2009.04309.x

    Article  PubMed  CAS  Google Scholar 

  54. Larisika M, Claus H, König H (2008) Pulsed-field gel electrophoresis for the discrimination of Oenococcus oeni isolates from different wine-growing regions in Germany. Int J Food Microbiol 123:171–176. doi:10.1016/j.ijfoodmicro.2007.11.081

    Article  PubMed  CAS  Google Scholar 

  55. Le Jeune C, Lonvaud-Funel A, ten Brink B, Hofstra H, van der Vossen JMBM (1995) Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. J Appl Microbiol 78(3):316–326. doi:10.1111/j.1365-2672.1995.tb05032.x

    Article  CAS  Google Scholar 

  56. Legras J-L, Karst F (2003) Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterization. FEMS Microbiol Lett 221:249–255. doi:10.1016/S0378-1097(03)00205-2

    Article  PubMed  CAS  Google Scholar 

  57. Legras J-L, Merdinoglu D, Cornuet J-M, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16(10):2091–2102. doi:10.1111/j.1365-294X.2007.03266.x

    Article  PubMed  CAS  Google Scholar 

  58. Li SS, Cheng C, Li Z, Chen JY, Yan B, Han BZ, Reeves M (2010) Yeast species associated with wine grapes in China. Int J Food Microbiol 138:85–90. doi:10.1016/j.ijfoodmicro.2010.01.009

    Article  PubMed  CAS  Google Scholar 

  59. Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borth N, Breitenbach M, Prillinger H, Tiefenbrunner W (2007) Genetically different wine yeast isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res 7(6):953–965. doi:10.1111/j.1567-1364.2007.00240.x

    Article  PubMed  CAS  Google Scholar 

  60. Lopez I, Ruiz-Larrea F, Cocolin L, Orr E, Phister T, Marshall M, VanderGheynst J, Mills DA (2003) Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis. Appl Environ Microbiol 69(11):6801–6807. doi:10.1128/AEM.69.11.6801-6807.2003

    Article  PubMed  CAS  Google Scholar 

  61. Lopez V, Fernández-Espinar MT, Barrio E, Ramón D, Querol A (2003) A new PCR-based method for monitoring inoculated wine fermentations. Int J Food Microbiol 81(1):63–71. doi:10.1016/S0168-1605(02)00194-0

    Article  PubMed  CAS  Google Scholar 

  62. Madigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Person Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  63. Maiden MC (2006) Multilocus sequence typing of bacteria. Annu Rev Microbiol 60:561–588. doi:10.1146/annurev.micro.59.030804.121325

    Article  PubMed  CAS  Google Scholar 

  64. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95(6):3140–3145

    Article  PubMed  CAS  Google Scholar 

  65. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hugues J, Goh Y, Benson A, Baldwin K, Lee J-H, Diaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan DJ, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103(42):15611–15616. doi:10.1073/pnas.0607117103

    Article  PubMed  Google Scholar 

  66. Malacrino P, Zapparoli G, Torriani S, Dellaglio F (2001) Rapid detection of viable yeasts and bacteria in wine by flow cytometry. J Microbiol Methods 45(2):127–134. doi:10.1016/S0167-7012(01)00243-3

    Article  PubMed  CAS  Google Scholar 

  67. Manzano M, Medrala D, Giusto C, Bartolomeoli I, Urso R, Comi G (2006) Classical and molecular analyses to characterize commercial dry yeasts used in wine fermentations. J Appl Microbiol 100(3):599–607. doi:10.1111/j.1365-2672.2005.02807.x

    Article  PubMed  CAS  Google Scholar 

  68. Manzano M, Cocolin L, Longo B, Comi G (2004) PCR-DGGE differentiation of strains of Saccharomyces sensu stricto. Antonie van Leeuwenhoek 85(1):23–27. doi:10.1023/B:ANTO.0000020270.44019.39

    Article  PubMed  CAS  Google Scholar 

  69. Manzano M, Cocolin L, Iacumin L, Cantoni C, Comi G (2005) A PCR-TGGE (Temperature Gradient Gel Electrophoresis) technique to assess differentiation among enological Saccharomyces cerevisiae strains. Int J Food Microbiol 101(3):333–339. doi:10.1016/j.ijfoodmicro.2004.10.049

    Article  PubMed  CAS  Google Scholar 

  70. Martorell P, Barata A, Malfeito-Ferreira M, Fernández-Espinar MT, Loureiro V, Querol A (2006) Molecular typing of the yeast species Dekkera bruxellensis and Pichia guilliermondii recovered from wine-related sources. Int J Food Microbiol 106(1):79–84. doi:10.1016/j.ijfoodmicro.2005.05.014

    Article  PubMed  CAS  Google Scholar 

  71. Millet V, Lonvaud-Funel A (2000) The viable but nonculturable state of wine micro-organisms during storage. Lett Appl Microbiol 30(2):136–141. doi:10.1046/j.1472-765x.2000.00684.x

    Article  PubMed  CAS  Google Scholar 

  72. Mills DA, Phister T, Neeley E, Johannsen E (2008) Wine Fermentation. In: Cocolin L, Ercolini D (eds) Molecular techniques in the microbial ecology of fermented foods. Springer, Berlin Heidelberg New York, pp 162–192. doi:10.1007/978-0-387-74520-6_6

  73. Miot-Sertier C, Lonvaud-Funel A (2007) Development of a molecular method for the typing of Brettanomyces bruxellensis (Dekkera bruxellensis) at the strain level. J Appl Microbiol 102(2):555–562. doi:10.1111/j.1365-2672.2006.03069.x

    Article  PubMed  CAS  Google Scholar 

  74. Mitrakul CM, Henick-Kling T, Egli CM (1999) Discrimination of Brettanomyces/Dekkera yeast isolates from wine by using various DNA fingerprinting methods. Food Microbiol 16(1):3–14. doi:10.1006/fmic.1998.0217

    Article  CAS  Google Scholar 

  75. Muñoz R, Gómez A, Robles V, Rodriguez P, Cebollero E, Tabera L, Carrascosa AV, Gonzalez R (2009) Multilocus sequence typing of oenological Saccharomyces cerevisiae strains. Food Microbiol 26(8):841–846. doi:10.1016/j.fm.2009.05.009

    Article  PubMed  CAS  Google Scholar 

  76. Muyzer G, Smalia K (1998) Application of denaturing gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73(1):127–141. doi:10.1023/A:1000669317571

    Article  PubMed  CAS  Google Scholar 

  77. Muyzer G, deWaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    PubMed  CAS  Google Scholar 

  78. Neeley ET, Phister TG, Mills DA (2005) Differential real-time PCR assay for enumeration of lactic acid bacteria in wine. Appl Environ Microbiol 71(12):8954–8957. doi:10.1128/AEM.71.12.8954-8857.2005

    Article  PubMed  CAS  Google Scholar 

  79. Nielsen PE, Egholm M, Buchardt O (1994) Peptide nuclei acid (PNA) A DNA mimic with a peptide backbone. Bioconjug Chem 5(1):3–7. doi:10.1021/bc00025a001

    Article  PubMed  CAS  Google Scholar 

  80. Nocker A, Camper AK (2006) Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72(3):1997–2004. doi:10.1128/AEM.72.3.1997-2004.2006

    Article  PubMed  CAS  Google Scholar 

  81. Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54(2):276–289. doi:10.1007/s00248-006-9199-5

    Article  PubMed  CAS  Google Scholar 

  82. Odds FC, Jacobsen MD (2008) Multilocus sequence typing of pathogenic Candida species. Eukaryot Cell 7(7):1075–1084. doi:10.1128/EC.00062-08

    Article  PubMed  CAS  Google Scholar 

  83. Oliveira K, Hasse G, Kurtzman C, Hyldig-Nielsen JJ, Stender H (2001) Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 39(11):4138–4141. doi:10.1128/JCM.39.11.4138-4141.2001

    Article  PubMed  CAS  Google Scholar 

  84. Perrone G, Susca A, Epifani F, Mulè G (2006) AFLP characterization of Southern Europe population of Aspergillus Section Nigri from grapes. Int J Food Microbiol 111:S22–S27. doi:10.1016/j.ijfoodmicro.2006.03.009

    Article  PubMed  CAS  Google Scholar 

  85. Perrone G, Mulè G, Susca A, Battilani P, Pietri A, Logrieco A (2006) Ochratoxin A production and amplified fragment length polymorphism analysis of Aspergillus carbonarius, Aspergillus tubingensis, and Aspergillus niger strains isolated from grapes in Italy. Appl Environ Microbiol 72:680–685. doi:10.1128/AEM.72.1.680-685.2006

    Article  PubMed  CAS  Google Scholar 

  86. Perry-O’Keefe H, Stender H, Broomer A, Oliveira K, Coull J, Hyldig-Nielsen JJ (2001) Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific micro-organisms. J Appl Microbiol 90(2):180–189. doi:10.1046/j.1365-2672.2001.01230.x

    Article  PubMed  Google Scholar 

  87. Peters TM (2009) Pulsed-field gel electrophoresis for molecular epidemiology of food pathogens. Methods Mol Biol 551:59–70. doi:10.1007/978-1-60327-999-4_6

    Article  PubMed  CAS  Google Scholar 

  88. Peterson SW, Kurtzman CP (1991) Ribosomal RNA sequence divergence among sibling species of yeasts. Syst Appl Microbiol 14(2):124–129

    CAS  Google Scholar 

  89. Phister TG, Mills DA (2003) Real-time PCR assay for detection and enumeration of Dekkera bruxellensis in wine. Appl Environ Microbiol 69:7430–7434. doi:10.1128/AEM.69.12.7430-7434.2003

    Article  PubMed  CAS  Google Scholar 

  90. Querol A, Barrio E, Ramon D (1992) A comparative study of different methods of yeast strain characterization. Syst Appl Microbiol 15(3):439–446

    Google Scholar 

  91. Rantsiou K, Comi G, Cocolin L (2004) The rpoB gene as a target for PCR-DGGE analysis to follow lactic acid bacterial population dynamics during food fermentations. Food Microbiol 21(4):481–487. doi:10.1016/j.fm.2003.10.002

    Article  CAS  Google Scholar 

  92. Raspor P, Milek DM, Polanc J, Možina SS, Čadež N (2006) Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia. Int J Food Microbiol 109(1–2):97–102. doi:10.1016/j.ijfoodmicro.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  93. Rawsthorne H, Phister TG (2009) Detection of viable Zygosaccharomyces bailii in fruit juices using ethidium monoazide bromide and real-time PCR. Int J Food Microbiol 131(2–3):246–250. doi:10.1016/j.ijfoodmicro.2009.01.031

    Article  PubMed  CAS  Google Scholar 

  94. Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75(1):149–164. doi:10.1007/s00253-006-0798-3

    Article  PubMed  CAS  Google Scholar 

  95. Renouf V, Claisse O, Miot-Sertier C, Lonvaud-Funel A (2006) Lactic acid bacteria evolution during winemaking: use of rpoB gene as a target for PCR-DGGE analysis. Food Microbiol 23:136–145. doi:10.1016/j.fm.2005.01.019

    Article  PubMed  CAS  Google Scholar 

  96. Rodas AM, Ferrer S, Pardo I (2005) Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol 55(1):197–207. doi:10.1099/ijs.0.63249-0

    Article  PubMed  CAS  Google Scholar 

  97. Röder C, König H, Fröhlich J (2007) Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA. FEMS Yeast Res 7(6):1013–1026. doi:10.1111/j.1567-1364.2007.00267.x

    Article  PubMed  CAS  Google Scholar 

  98. Ruiz A, Poblet M, Mas A, Guillamon JM (2000) Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S–23S rDNA intergenic spacer. Int J Syst Evol Microbiol 50(6):1981–1987

    Article  PubMed  CAS  Google Scholar 

  99. Ruiz P, Izquierdo PM, Seseña S, Palop ML (2010) Selection of autochthonous Oenococcus oeni strains according to their oenological properties and vinification results. Int J Food Microbiol 137(2–3):230–235. doi:10.1016/j.ijfoodmicro.2009.11.027

    Article  PubMed  CAS  Google Scholar 

  100. Salinas F, Mandaković D, Urzua U, Massera A, Miras S, Combina M, Ganga MA, Martinez C (2010) Genomic and phenotypic comparison between similar wine yeast strains of Saccharomyces cerevisiae from different geographic origins. J Appl Microbiol 108(5):1850–1858. doi:10.1111/j.1365-2672.2010.04689.x

    Article  PubMed  CAS  Google Scholar 

  101. Schuller D, Valero E, Dequin S, Casel M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Micro Lett 231(1):19–26. doi:10.1016/S0378-1097(03)00928-5

    Article  CAS  Google Scholar 

  102. Selma MV, Martinez-Culebras PV, Elizaquivel P, Aznar R (2009) Simultaneous detection of the main black aspergilli responsible for ochratoxin A (OTA) contamination in grapes by multiplex real-time polymerase chain reaction. Food Addit Contam 26(2):180–188. doi:10.1080/02652030802345623

    Article  CAS  Google Scholar 

  103. Serpaggi V, Remize F, Grand AS, Alexandre H (2010) Specific identification and quantification of the spoilage microorganism Brettanomyces in wine by flow cytometry: a useful tool for winemakers. Cytometry A 77A(6):497–499. doi:10.1002/cyto.a.20861

    Article  CAS  Google Scholar 

  104. Sohier D, Lonvaud-Funel A (1998) Rapid and sensitive in situ hybridization method for detecting and identifying lactic acid bacteria in wine. Food Microbiol 15(4):391–397. doi:10.1006/fmic.1998.0189

    Article  CAS  Google Scholar 

  105. Sohier D, Coulon J, Lonvaud-Funel A (1999) Molecular identification of Lactobacillus hilgardii and genetic relatedness with Lactobacillus brevis. Int J Syst Bacteriol 49(3):1075–1081. doi:10.1099/00207713-49-3-1075

    Article  PubMed  CAS  Google Scholar 

  106. Solieri L, Giudici P (2010) Development of SCAR marker-targeted quantitative PCR assay for strain-specific detection of Oenococcus oeni during wine malolactic fermentation. Appl Environ Microbiol 76:7765–7774. doi:10.1128/AEM.00929-10

    Article  PubMed  CAS  Google Scholar 

  107. Stender H, Kurtzman C, Hyldig-Nielsen JJ, Sørensen D, Broomer A, Oliveira K, Perry-O’Keefe H, Sage A, Young B, Coull J (2001) Identification of Dekerra bruxellensis (Brettanomyces) from wine by fluorescence in situ hybridization using peptide nucleic acid probes. Appl Environ Microbiol 67(2):938–941. doi:10.1128/AEM.67.2.938-941.2001

    Article  PubMed  CAS  Google Scholar 

  108. Tessonnière H, Vidal S, Barnavon L, Alexandre H, Remize F (2009) Design and performance testing of a real-time PCR assay for sensitive and reliable direct quantification of Brettanomyces in wine. Int J Food Microbiol 129(3):237–243. doi:10.1016/j.ijfoodmicro.2008.11.027

    Article  PubMed  CAS  Google Scholar 

  109. Urso R, Rantsiou K, Dolci P, Rolle L, Comi G, Cocolin L (2008) Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods. FEMS Yeast Res 8(7):1053–1062. doi:10.1111/j.1567-1364.2008.00364.x

    Article  PubMed  CAS  Google Scholar 

  110. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63(10):3741–3751

    PubMed  CAS  Google Scholar 

  111. Winzeler EA, Castillo-Davis CI, Oshiro G, Liang D, Richards DR, Zhou Y, Hartl DL (2003) Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays. Genetics 163(1):79–89

    PubMed  CAS  Google Scholar 

  112. Xufre A, Albergaria H, Inácio J, Spencer-Martins I, Gírio F (2006) Application of fluorescence in situ hybridization (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Int J Food Microbiol 108(3):376–384. doi:10.1016/j.ijfoodmicro.2006.01.025

    PubMed  CAS  Google Scholar 

  113. Zapparoli G, Torriani S, Pesente P, Dellaglio F (1998) Design and evaluation of malolactic enzyme gene targeted primers for rapid identification and detection of Oenococcus oeni in wine. Lett Appl Microbiol 27(5):243–246. doi:10.1046/j.1472-765X.1998.00448.x

    Article  PubMed  CAS  Google Scholar 

  114. Zavaleta AI, Martinez-Murcia AJ, Rodriguez-Valera F (1997) Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses. Appl Environ Microbiol 63(4):1261–1267

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the United States Department of Agriculture CREES National Research Initiative for funding this research through project number 2007-35504-18249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor G. Phister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivey, M.L., Phister, T.G. Detection and identification of microorganisms in wine: a review of molecular techniques. J Ind Microbiol Biotechnol 38, 1619–1634 (2011). https://doi.org/10.1007/s10295-011-1020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1020-x

Keywords

Navigation