Skip to main content
Log in

Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Lactobacillus casei Zhang is a widely recognized probiotic bacterium, which is being commercially used in China. To study the gene expression dynamics of L. casei Zhang during fermentation in soymilk, a whole genome microarray was used to screen for differentially expressed genes when grown to the lag phase, the late logarithmic phase, and the stationary phase. Comparisons of different transcripts next to each other revealed 162 and 63 significantly induced genes in the late logarithmic phase and stationary phase, of which the expression was at least threefold up-regulated and down-regulated, respectively. Approximately 38.4% of the up-regulated genes were associated with amino acid transport and metabolism notably for histidine and lysine biosynthesis, followed by genes/gene clusters involved in carbohydrate transport and metabolism, lipid transport and metabolism, and inorganic ion transport and metabolism. The analysis results suggest a complex stimulatory effect of soymilk-based ecosystem on the L. casei Zhang growth. On the other hand, it provides the very first insight into the molecular mechanism of L. casei strain for how it will adapt to the protein-rich environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Azcarate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR (2005) Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol 71:5794–5804

    Article  PubMed  CAS  Google Scholar 

  2. Boyaval P (1989) Lactic acid bacteria and metal ions. Lait 69:87–113

    Article  CAS  Google Scholar 

  3. Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL (2009) Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 1:239–257

    Article  PubMed  Google Scholar 

  4. Cappa F, Cattivelli D, Cocconcelli PS (2005) The uvrA gene is involved in oxidative and acid stress responses in Lactobacillus helveticus CNBL1156. Res Microbiol 156:1039–1047

    Article  PubMed  CAS  Google Scholar 

  5. Chang YY, Cronan JE Jr (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259

    Article  PubMed  CAS  Google Scholar 

  6. Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76:217–246

    Article  PubMed  CAS  Google Scholar 

  7. Corcoran BM, Stanton C, Fitzgerald G, Ross RP (2008) Life under stress: the probiotic stress response and how it may be manipulated. Curr Pharm Des 14:1382–1399

    Article  PubMed  CAS  Google Scholar 

  8. Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453

    Article  PubMed  CAS  Google Scholar 

  9. Dave RI, Shah NP (1998) Ingredient supplementation effects on viability of probiotic bacteria in yogurt. J Dairy Sci 81:2804–2816

    Article  PubMed  CAS  Google Scholar 

  10. De Vuyst L (2000) Technology aspects related to the application of functional starter cultures. Food Technol Biotechnol 38:105–112

    Google Scholar 

  11. den Hengst CD, Groeneveld M, Kuipers OP, Kok J (2006) Identification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA). J Bacteriol 188:3280–3289

    Article  Google Scholar 

  12. Donkor ON, Shah NP (2008) Production of beta-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J Food Sci 73:M15–M20

    Article  PubMed  CAS  Google Scholar 

  13. Duwat P, Ehrlich SD, Gruss A (1995) The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol 17:1121–1131

    Article  PubMed  CAS  Google Scholar 

  14. Fozo EM, Kajfasz JK, Quivey RG Jr (2004) Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett 238:291–295

    Article  PubMed  CAS  Google Scholar 

  15. Fozo EM, Quivey RG Jr (2004) The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186:4152–4158

    Article  PubMed  CAS  Google Scholar 

  16. Franck P, Moneret Vautrin DA, Dousset B, Kanny G, Nabet P, Guenard-Bilbaut L, Parisot L (2002) The allergenicity of soybean-based products is modified by food technologies. Int Arc Allergy Immunol 128:212–219

    Article  CAS  Google Scholar 

  17. Gerharz T, Reinelt S, Kaspar S, Scapozza L, Bott M (2003) Identification of basic amino acid residues important for citrate binding by the periplasmic receptor domain of the sensor kinase CitA. Biochemistry 42:5917–5924

    Article  PubMed  CAS  Google Scholar 

  18. Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624

    Article  PubMed  Google Scholar 

  19. Guedon E, Renault P, Ehrlich SD, Delorme C (2001) Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J Bacteriol 183:3614–3622

    Article  PubMed  CAS  Google Scholar 

  20. Guo J, Wang J, Yan L, Chen W, Liu X, Zhang H (2009) In vitro comparison of probiotic properties of Lactobacillus casei Zhang, a potential new probiotic, with selected probiotic strains. Lebenson Wiss Technol 42:1640–1646

    Article  CAS  Google Scholar 

  21. Haandrikman A, Kok JJ, Venema G (1991) Lactococcal proteinase maturation protein PrtM is a lipoprotein. J Bacteriol 173:4517–4525

    PubMed  CAS  Google Scholar 

  22. Juillard V, Le Bars D, Kunji ER, Konings WN, Gripon JC, Richard J (1995) Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk. Appl Environ Microbiol 61:3024–3030

    PubMed  CAS  Google Scholar 

  23. Kunji ER, Hagting A, De Vries CJ, Juillard V, Haandrikman AJ, Poolman B, Konings WN (1995) Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J Biol Chem 270:1569–1574

    Article  PubMed  CAS  Google Scholar 

  24. Laddaga RA, Bessen R, Silver S (1985) Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium transport. J Bacteriol 162:1106–1110

    PubMed  CAS  Google Scholar 

  25. Li H, Lu M, Guo H, Li W, Zhang H (2010) Protective effect of sucrose on the membrane properties of Lactobacillus casei Zhang subjected to freeze-drying. J Food Protect 73:715–719

    CAS  Google Scholar 

  26. Lin FM, Chiu CH, Pan TM (2004) Fermentation of a milk-soymilk and Lycium chinense Miller mixture using a new isolate of Lactobacillus paracasei subsp. paracasei NTU101 and Bifidobacterium longum. J Ind Microbiol Biotechnol 31:559–564

    Article  PubMed  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  28. Luesink EJ, van Herpen RE, Grossiord BP, Kuipers OP, de Vos WM (1998) Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol Microbiol 30:789–798

    Article  PubMed  CAS  Google Scholar 

  29. Matsubara K, Ohnishi K, Kiritani K (1992) Nucleotide sequences and characterization of liv genes encoding components of the high-affinity branched-chain amino acid transport system in Salmonella typhimurium. J Biochem 112:93–101

    PubMed  CAS  Google Scholar 

  30. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  PubMed  CAS  Google Scholar 

  31. O’Connell-Motherway M, van Sinderen D, Morel-Deville F, Fitzgerald GF, Ehrlich SD, Morel P (2000) Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 146:935–947

    PubMed  Google Scholar 

  32. Pastar I, Tonic I, Golic N, Kojic M, van Kranenburg R, Kleerebezem M, Topisirovic L, Jovanovic G (2003) Identification and genetic characterization of a novel proteinase, PrtR, from the human isolate Lactobacillus rhamnosus BGT10. Appl Environ Microbiol 69:5802–5811

    Article  PubMed  CAS  Google Scholar 

  33. Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037

    PubMed  CAS  Google Scholar 

  34. Quattrucci E, Bruschi L, Manzi P, Aromolo R, Panfili G (1997) Nutritional evaluation of typical and reformulated Italian cheeses. J Sci Food Agr 73:46–52

    Article  CAS  Google Scholar 

  35. Quay SC, Dick TE, Oxender DL (1977) Role of transport systems in amino acid metabolism: leucine toxicity and the branched-chain amino acid transport systems. J Bacteriol 129:1257–1265

    PubMed  CAS  Google Scholar 

  36. Quivey RG Jr, Faustoferri R, Monahan K, Marquis R (2000) Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans. FEMS Microbiol Lett 189:89–92

    Article  PubMed  CAS  Google Scholar 

  37. Redon E, Loubiere P, Cocaign-Bousquet M (2005) Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation. J Bacteriol 187:3589–3592

    Article  PubMed  CAS  Google Scholar 

  38. Reid G (2005) The importance of guidelines in the development and application of probiotics. Curr Pharm Des 11:11–16

    Article  PubMed  CAS  Google Scholar 

  39. Renault P, Gaillardin C, Heslot H (1988) Role of malolactic fermentation in lactic acid bacteria. Biochimie 70:375–379

    Article  PubMed  CAS  Google Scholar 

  40. Rico J, Yebra MJ, Perez-Martinez G, Deutscher J, Monedero V (2008) Analysis of ldh genes in Lactobacillus casei BL23: role on lactic acid production. J Ind Microbiol Biotechnol 35:579–586

    Article  PubMed  CAS  Google Scholar 

  41. Saulnier D, Molenaar MD, WMd Vos, Gibson GR, Kolida S (2007) Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol 73:1753–1765

    Article  PubMed  CAS  Google Scholar 

  42. Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406

    Article  PubMed  CAS  Google Scholar 

  43. Shah NP (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907

    Article  PubMed  CAS  Google Scholar 

  44. Sheng J, Marquis RE (2007) Malolactic fermentation by Streptococcus mutans. FEMS Microbiol Lett 272:196–201

    Article  PubMed  CAS  Google Scholar 

  45. Shimakawa Y, Matsubara S, Yuki N, Ikeda M, Ishikawa F (2003) Evaluation of Bifidobacterium breve strain Yakult-fermented soymilk as a probiotic food. Int J Food Microbiol 81:131–136

    Article  PubMed  CAS  Google Scholar 

  46. Singh VK, Moskovitz J (2003) Multiple methionine sulfoxide reductase genes in Staphylococcus aureus: expression of activity and roles in tolerance of oxidative stress. Microbiology 149:2739–2747

    Article  PubMed  CAS  Google Scholar 

  47. Siro I, Kapolna E, Kapolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance–a review. Appetite 51:456–467

    Article  PubMed  Google Scholar 

  48. Stucky K, Hagting A, Klein JR, Matern H, Henrich B, Konings WN, Plapp R (1995) Cloning and characterization of brnQ, a gene encoding a low-affinity, branched-chain amino acid carrier in Lactobacillus delbruckii subsp. lactis DSM7290. Mol Gen Genet 249:682–690

    Article  PubMed  CAS  Google Scholar 

  49. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  PubMed  CAS  Google Scholar 

  50. Trindade CS, Terzi SC, Trugo LC, Della Modesta RC, Couri S (2001) Development and sensory evaluation of soy milk based yoghurt. Arch Latinoamericanos Nutr 51:100–104

    CAS  Google Scholar 

  51. Tynecka Z, Gos Z, Zajac J (1981) Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus. J Bacteriol 147:305–312

    PubMed  CAS  Google Scholar 

  52. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216

    Article  PubMed  Google Scholar 

  53. Wall T, Bath K, Britton RA, Jonsson H, Versalovic J, Roos S (2007) The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl Environ Microbiol 73:3924–3935

    Article  PubMed  CAS  Google Scholar 

  54. Wang H, Dong C, Chen Y, Cui L, Zhang H (2010) A new probiotic cheddar cheese with high ACE-inhibitory activity and γ-Aminobutyric acid content produced with koumiss-derived Lactobacillus casei Zhang. Food Technol Biotechnol 48:62–70

    CAS  Google Scholar 

  55. Wang J, Guo Z, Zhang Q, Yan L, Chen W, Liu XM, Zhang HP (2009) Fermentation characteristics and transit tolerance of probiotic Lactobacillus casei Zhang in soymilk and bovine milk during storage. J Dairy Sci 92:2468–2476

    Article  PubMed  CAS  Google Scholar 

  56. Wu R, Wang L, Wang J, Li H, Menghe B, Wu J, Guo M, Zhang H (2009) Isolation and preliminary probiotic selection of lactobacilli from koumiss in Inner Mongolia. J Basic Microbiol 49:318–326

    Article  PubMed  Google Scholar 

  57. Wu R, Wang W, Yu D, Zhang W, Li Y, Sun Z, Wu J, Meng H, Zhang H (2009) Proteomic analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditionally home-made koumiss in Inner Mongolia of China. Mol Cell Proteomics 8:2321–2338

    Article  PubMed  CAS  Google Scholar 

  58. Ya T, Zhang Q, Chu F, Merritt J, Bilige M, Sun T, Du R, Zhang H (2008) Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol 9:68

    Article  PubMed  Google Scholar 

  59. Yan D (2007) Protection of the glutamate pool concentration in enteric bacteria. Proc Natl Acad Sci USA 104:9475–9480

    Article  PubMed  CAS  Google Scholar 

  60. Zhang H, Xu J, Wang J, Menghebilige SunT, Li H, Guo M (2008) A survey on chemical and microbiological composition of kurut, naturally fermented yak milk from Qinghai in China. Food Control 19:578–586

    Article  CAS  Google Scholar 

  61. Zhang W, Yu D, Sun Z, Chen X, Bao Q, Meng H, Hu S, Zhang H (2008) Complete nucleotide sequence of plasmid plca36 isolated from Lactobacillus casei Zhang. Plasmid 60:131–135

    Article  PubMed  CAS  Google Scholar 

  62. Zhang W, Yu D, Sun Z, Wu R, Chen X, Chen W, Meng H, Hu S, Zhang H (2010) Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China. J Bacteriol 192:5268–5269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 30860219), the Hi-tech Research and Development Program of China (863 Program) (Grant No. 2010AA10Z302), the earmarked fund for Modern Agro-industry Technology Research System (Grant No. nycytx-0501), and the Innovation Research Team Development Program of Ministry of Education of China (Grant No. IRT0967). We would like to thank Eric Richard Spaans for the English editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to He Meng or He-Ping Zhang.

Additional information

Ji-Cheng Wang and Wen-Yi Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JC., Zhang, WY., Zhong, Z. et al. Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk. J Ind Microbiol Biotechnol 39, 191–206 (2012). https://doi.org/10.1007/s10295-011-1015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1015-7

Keywords

Navigation