Skip to main content
Log in

Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Azo dyes are widely used in the plastic, paper, cosmetics, food, and pharmaceutical industries. Some metabolites of these dyes are potentially genotoxic. The toxic effects of azo dyes and their potential reduction metabolites on Staphylococcus aureus ATCC BAA 1556 were studied. When the cultures were incubated with 6, 18, and 36 μg/ml of Orange II and Sudan III for 48 h, 76.3, 68.5, and 61.7% of Orange II and 97.8, 93.9, and 75.8% of Sudan III were reduced by the bacterium, respectively. In the presence of 36 μg/ml Sudan III, the cell viability of the bacterium decreased to 61.9% after 48 h of incubation, whereas the cell viability of the control culture without the dye was 71.5%. Moreover, the optical density of the bacterial cultures at 10 h decreased from 0.74 to 0.55, indicating that Sudan III is able to inhibit growth of the bacterium. However, Orange II had no significant effects on either cell growth or cell viability of the bacterium at the tested concentrations. 1-Amino-2-naphthol, a metabolite common to Orange II and Sudan III, was capable of inhibiting cell growth of the bacterium at 1 μg/ml and completely stopped bacterial cell growth at 24–48 μg/ml. On the other hand, the other metabolites of Orange II and Sudan III, namely sulfanilic acid, p-phenylenediamine, and aniline, showed no significant effects on cell growth. p-Phenylenediamine exhibited a synergistic effect with 1-amino-2-naphthol on cell growth inhibition. All of the dye metabolites had no significant effects on cell viability of the bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abram FSH, Sims IR (1982) The toxicity of aniline to rainbow trout. Water Res 16:1309–1312

    Article  CAS  Google Scholar 

  2. An Y, Jiang L, Cao J, Geng C, Zhong L (2007) Sudan I induces genotoxic effects and oxidative DNA damage in HepG2 cells. Mutat Res 627:164–170

    PubMed  CAS  Google Scholar 

  3. Ben Mansour H, Corroler D, Barillier D, Ghedira K, Chekir L, Mosrati R (2007) Evaluation of genotoxicity and pro-oxidant effect of the azo dyes: acids yellow 17, violet 7 and orange 52, and of their degradation products by Pseudomonas putida mt-2. Food Chem Toxicol 45:1670–1677

    Article  PubMed  CAS  Google Scholar 

  4. Bomhard EM, Herbold BA (2005) Genotoxic activities of aniline and its metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Crit Rev Toxicol 35:783–835

    Article  PubMed  CAS  Google Scholar 

  5. Calbiani F, Careri M, Elviri L, Mangia A, Pistara L, Zagnoni I (2004) Development and in-house validation of a liquid chromatography-electrospray-tandem mass spectrometry method for the simultaneous determination of Sudan I, Sudan II, Sudan III and Sudan IV in hot chilli products. J Chromatogr A 1042:123–130

    Article  PubMed  CAS  Google Scholar 

  6. Cerniglia CE, Zhuo Z, Manning BW, Federle TW, Heflich RH (1986) Mutagenic activation of the benzidine-based dye direct black 38 by human intestinal microflora. Mutat Res 175:11–16

    Article  PubMed  CAS  Google Scholar 

  7. Chambers HF, Deleo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641

    Article  PubMed  CAS  Google Scholar 

  8. Chen H, Feng J, Kweon O, Xu H, Cerniglia C (2010) Identification and molecular characterization of a novel flavin-free NADPH preferred azoreductase encoded by azoB in Pigmentiphaga kullae K24. BMC Biochemistry 11:13

    Article  PubMed  Google Scholar 

  9. Chen H, Hopper SL, Cerniglia CE (2005) Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein. Microbiology 151:1433–1441

    Article  PubMed  CAS  Google Scholar 

  10. Chen H, Xu H, Heinze TM, Cerniglia CE (2009) Decolorization of water and oil-soluble azo dyes by Lactobacillus acidophilus and Lactobacillus fermentum. J Ind Microbiol Biotechnol 36:1459–1466

    Article  PubMed  CAS  Google Scholar 

  11. Chen H, Xu H, Kweon O, Chen S, Cerniglia CE (2008) Functional role of Trp-105 of Enterococcus faecalis azoreductase (AzoA) as resolved by structural and mutational analysis. Microbiology 154:2659–2667

    Article  PubMed  CAS  Google Scholar 

  12. Chen KC, Huang WT, Wu JY, Houng JY (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol 23:686–690

    Article  PubMed  CAS  Google Scholar 

  13. Chung KT (1983) The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutat Res 114:269–281

    PubMed  CAS  Google Scholar 

  14. Chung KT, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Environ Microbiol 35:558–562

    PubMed  CAS  Google Scholar 

  15. Chung KT, Stevens SE Jr, Cerniglia CE (1992) The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol 18:175–190

    Article  PubMed  CAS  Google Scholar 

  16. Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence? Br J Dermatol 158:442–455

    Article  PubMed  CAS  Google Scholar 

  17. Daniels NA, MacKinnon L, Rowe SM, Bean NH, Griffin PM, Mead PS (2002) Foodborne disease outbreaks in United States schools. Pediatr Infect Dis J 21:623–628

    Article  PubMed  Google Scholar 

  18. Elisangela F, Andrea Z, Fabio DG, Menezes Cristiano R, Regina DL, Artur C-P (2009) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeter Biodegr 63:280–288

    Article  CAS  Google Scholar 

  19. Fassina G, Abbondandolo A, Mariani L, Taningher M, Parodi S (1990) Mutagenicity in V79 cells does not correlate with carcinogenity in small rodents for 12 aromatic amines. J Toxicol Environ Health 29:109–130

    Article  PubMed  CAS  Google Scholar 

  20. Feng J, Heinze TM, Xu H, Cerniglia CE, Chen H (2010) Evidence for significantly enhancing reduction of Azo dyes in Escherichia coli by expressed cytoplasmic Azoreductase (AzoA) of Enterococcus faecalis. Protein Pept Lett 17:578–584

    Article  PubMed  CAS  Google Scholar 

  21. Gao Z, Tseng CH, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104:2927–2932

    Article  PubMed  CAS  Google Scholar 

  22. Garrigue JL, Ballantyne M, Kumaravel T, Lloyd M, Nohynek GJ, Kirkland D, Toutain H (2006) In vitro genotoxicity of para-phenylenediamine and its N-monoacetyl or N,N′-diacetyl metabolites. Mutat Res 608:58–71

    PubMed  CAS  Google Scholar 

  23. Gottlieb A, Shaw C, Smith A, Wheatley A, Forsythe S (2003) The toxicity of textile reactive azo dyes after hydrolysis and decolourisation. J Biotechnol 101:49–56

    Article  PubMed  CAS  Google Scholar 

  24. Hou M, Li F, Liu X, Wang X, Wan H (2007) The effect of substituent groups on the reductive degradation of azo dyes by zerovalent iron. J Hazard Mater 145:305–314

    Article  PubMed  CAS  Google Scholar 

  25. Ito K, Nakanishi M, Lee WC, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2006) Three-dimensional structure of AzoR from Escherichia coli. An oxidereductase conserved in microorganisms. J Biol Chem 281:20567–20576

    Article  PubMed  CAS  Google Scholar 

  26. Ito K, Nakanishi M, Lee WC, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2008) Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J Biol Chem 283:13889–13896

    Article  PubMed  CAS  Google Scholar 

  27. Joshi T, Iyengar L, Singh K, Garg S (2008) Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes. Bioresour Technol 99:7115–7121

    Article  PubMed  CAS  Google Scholar 

  28. Khan MF, Wu X, Kaphalia BS, Boor PJ, Ansari GAS (1997) Acute hematopoietic toxicity of aniline in rats. Toxicol Lett 92:31–37

    Article  PubMed  CAS  Google Scholar 

  29. Kozuka I, Goh CL, Doi T, Yioshikawa K (1988) Sudan I as a cause of pigmented contact dermatitis in “kumkum” (an Indian cosmetic). Ann Acad Med Singapore 17:492–494

    PubMed  CAS  Google Scholar 

  30. Levine WG (1991) Metabolism of azo dyes: implication for detoxication and activation. Drug Metab Rev 23:253–309

    Article  PubMed  CAS  Google Scholar 

  31. Li L, Gao HW, Ren JR, Chen L, Li YC, Zhao JF, Zhao HP, Yuan Y (2007) Binding of Sudan II and IV to lecithin liposomes and E. coli membranes: insights into the toxicity of hydrophobic azo dyes. BMC Struct Biol 7:16

    Google Scholar 

  32. Liger D, Graille M, Zhou CZ, Leulliot N, Quevillon-Cheruel S, Blondeau K, Janin J, van Tilbeurgh H (2004) Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem 279:34890–34897

    Article  PubMed  CAS  Google Scholar 

  33. Lindsay JA, Holden MT (2004) Staphylococcus aureus: superbug, super genome? Trends Microbiol 12:378–385

    Article  PubMed  CAS  Google Scholar 

  34. Liu ZJ, Chen H, Shaw N, Hopper SL, Chen L, Chen S, Cerniglia CE, Wang BC (2007) Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys 463:68–77

    Article  PubMed  CAS  Google Scholar 

  35. Macwana SR, Punj S, Cooper J, Schwenk E, John GH (2009) Identification and Isolation of an Azoreductase from Enterococcus faecium. Curr Issues Mol Biol 12:43–48

    PubMed  Google Scholar 

  36. Mansour HB, Mosrati R, Corroler D, Ghedira K, Barillier D, Chekir-Ghedira L (2009) Mutagenicity and genotoxicity of acid yellow 17 and its biodegradation products. Drug Chem Toxicol 32:222–229

    Article  PubMed  Google Scholar 

  37. Marmion DM (1991) Handbook of US colorants: foods, drugs, cosmetics, and medical devices, 3rd edn. Wiley-Interscience, London

    Google Scholar 

  38. Massey RC, Horsburgh MJ, Lina G, Hook M, Recker M (2006) The evolution and maintenance of virulence in Staphylococcus aureus: a role for host-to-host transmission? Nat Rev Microbiol 4:953–958

    Article  PubMed  CAS  Google Scholar 

  39. Morokutti A, Lyskowski A, Sollner S, Pointner E, Fitzpatrick TB, Kratky C, Gruber K, Macheroux P (2005) Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase. Biochemistry 44:13724–13733

    Article  PubMed  CAS  Google Scholar 

  40. Muzzall JM, Cook WL (1979) Mutagenicity test of dyes used in cosmetics with the Salmonella/mammalian-microsome test. Mutat Res 67:1–8

    Article  PubMed  CAS  Google Scholar 

  41. Ng TW, Cai Q, Wong C-K, Chow AT, Wong P-K (2010) Simultaneous chromate reduction and azo dye decolourization by Brevibacterium casei: azo dye as electron donor for chromate reduction. J Hazard Mater 182:792–800

    Article  PubMed  CAS  Google Scholar 

  42. Pereira L, Coelho AV, Viegas CA, Santos MM, Robalo MP, Martins LO (2009) Enzymatic biotransformation of the azo dye Sudan Orange G with bacterial CotA-laccase. J Biotechnol 139:68–77

    Article  PubMed  CAS  Google Scholar 

  43. Platzek T, Lang C, Grohmann G, Gi US, Baltes W (1999) Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Hum Exp Toxicol 18:552–559

    Article  PubMed  CAS  Google Scholar 

  44. Ren JR, Zhao HP, Song C, Wang SL, Li L, Xu YT, Gao HW (2010) Comparative transmembrane transports of four typical lipophilic organic chemicals. Bioresour Technol 101:8632–8638

    Article  PubMed  CAS  Google Scholar 

  45. Ryan A, Laurieri N, Westwood I, Wang CJ, Lowe E, Sim E (2010) A novel mechanism for azoreduction. J Mol Biol 400:24–37

    Article  PubMed  CAS  Google Scholar 

  46. Stingley RL, Zou W, Heinze TM, Chen HZ, Cerniglia CE (2010) Metabolism of azo dyes by human skin microbiota. J Med Microbiol 59:108–114

    Article  PubMed  CAS  Google Scholar 

  47. Wang CJ, Hagemeier C, Rahman N, Lowe E, Noble M, Coughtrie M, Sim E, Westwood I (2007) Molecular cloning, characterisation and ligand-bound structure of an azoreductase from Pseudomonas aeruginosa. J Mol Biol 373:1213–1228

    Article  PubMed  CAS  Google Scholar 

  48. Wang CJ, Laurieri N, Abuhammad A, Lowe E, Westwood I, Ryan A, Sim E (2010) Role of tyrosine 131 in the active site of paAzoR1, an azoreductase with specificity for the inflammatory bowel disease prodrug balsalazide. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:2–7

    Article  PubMed  Google Scholar 

  49. Xu H, Heinze TM, Chen S, Cerniglia CE, Chen H (2007) Anaerobic metabolism of 1-amino-2-naphthol-based azo dyes (Sudan dyes) by human intestinal microflora. Appl Environ Microbiol 73:7759–7762

    Article  PubMed  CAS  Google Scholar 

  50. Xu H, Heinze TM, Paine DD, Cerniglia CE, Chen H (2010) Sudan azo dyes and Para Red degradation by prevalent bacteria of the human gastrointestinal tract. Anaerobe 16:114–119

    Article  PubMed  CAS  Google Scholar 

  51. Zhao X, Lu Y, Phillips DR, Hwang HM, Hardin IR (2007) Study of biodegradation products from azo dyes in fungal degradation by capillary electrophoresis/electrospray mass spectrometry. J Chromatogr A 1159:217–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Huanli Liu, Rajesh Nayak, and Robin Stingley for their critical review of the manuscript, Dr. Mark Hart for strain ATCC BAA 1556, and Ohgew Kweon for helpful discussions. This study was funded by the Office of Women’s Health and the National Center for Toxicological Research, United States Food and Drug Administration, and supported in part by appointments (HP and JF) to the Postgraduate Research Fellowship Program by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the US Food and Drug Administration. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, H., Feng, J., Cerniglia, C.E. et al. Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus . J Ind Microbiol Biotechnol 38, 1729–1738 (2011). https://doi.org/10.1007/s10295-011-0962-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0962-3

Keywords

Navigation