Skip to main content
Log in

Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The proper determination of experimental errors in bioprocesses can be very important because experimental errors can exert a major impact on the analysis of experimental results. Despite this, the effect of experimental errors on the analysis of bioprocess data has been largely overlooked in the literature. For this reason, we performed detailed statistical analyses of experimental errors obtained during the production of lactobionic acid and sorbitol in a system utilizing as catalyst the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of the bacteria Zymomonas mobilis. The magnitude of the experimental errors thus obtained were then correlated with the process operation conditions and with the composition of the culture media used for bacterial growth. It is shown that experimental errors can depend very significantly on the operation conditions and affect the interpretation of available experimental data. More specifically, in this study, experimental errors depended on the nutritional supplements added to the cultivation medium, the inoculation process, and the reaction time, which may be of fundamental importance for actual process development. The results obtained also indicate, for the first time, that GFOR activity can be affected by the composition of the medium in which cells are cultivated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abud AKS (2005) Estudo do controle de Qualidade da Produção de L-Asparaginase por Zymomonas mobilis. PhD thesis. PEQ/COPPE/UFRJ, Rio de Janeiro

  2. Alves TLM (1993) Estudo da Produção de Etanol por Zymomonas mobilis. PhD thesis. PEQ/COPPE/UFRJ, Rio de Janeiro

  3. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation and discovery. Wiley, New York

    Google Scholar 

  4. Cazetta ML, Celligoi MAPC, Buzato JB, Scarmino IS, Silva RSF (2005) Optimization study for sorbitol production by Zymomonas mobilis in sugar cane molasses. Process Biochem 40:747–751

    Article  CAS  Google Scholar 

  5. Cerqueira HS, Rawet R, Pinto JC (1999) The influence of experimental errors during laboratory evaluation of FCC catalysts. Appl Catal A Gen 181:209–220

    Article  CAS  Google Scholar 

  6. Dhariwal A, Mavrov V, Schroeder I (2006) Production of lactobionic acid with process integrated electrochemical enzyme regeneration and optimization of process variables using response surface methods (RSM). J Mol Catal B Enzym 42:64–69

    Article  CAS  Google Scholar 

  7. Druliolle H, Kokoh KB, Beden B (1995) Selective oxidation of lactose to lactobionic acid on lead-adatoms modified platinum electrodes in Na2CO3 + NaHCO3 buffered medium. J Electroanal Chem 385:77–83

    Article  Google Scholar 

  8. Erzinger GS, Silveira MM, Costa JPCL, Vitolo M, Jonas R (2003) Activity of glucose-fructose oxidoreductase in fresh and permeabilized cells of Zymomonas mobilis grown in different glucose concentrations. Brazil J Microbiol 34:329–333

    Article  CAS  Google Scholar 

  9. Erzinger GS, Vitolo M (2006) Zymomonas mobilis as catalyst for the biotechnological production of sorbitol and gluconic acid. Appl Biochem Biotechnol 129–132:787–794

    PubMed  Google Scholar 

  10. Ferraz HC, Alves TLM, Borges CP (2001) Coupling of an electrodialysis unit to a hollow fiber bioreactor for separation of gluconic acid from sorbitol produced by Zymomonas mobilis permeabilized cells. J Membr Sci 191:43–51

    Article  CAS  Google Scholar 

  11. Furlinger M, Haltrich D, Kulbe KD, Nidetzky B (1998) A multistep process is responsible for product-induced inactivation of glucose-rructose oxidoreductase from Zymomonas mobilis. Eur J Biochem 251:955–963

    Article  PubMed  CAS  Google Scholar 

  12. Garnick RL, Solli NJ, Papa PA (1988) The role of quality control in biotechnology: an analytical perspective. Anal Chem 60:2546–2557

    Article  PubMed  CAS  Google Scholar 

  13. Himmelblau DM (1970) Process analysis by statistical methods. Wiley, New York

    Google Scholar 

  14. Jonas R, Silveira MM (2004) Sorbitol can be produced not only chemically but also biotechnologically. Appl Biochem Biotechnol 118:321–336

    Article  PubMed  CAS  Google Scholar 

  15. Larentis AL, Bentes AMP Jr, Resende NS, Salim VMM, Pinto JC (2003) Analysis of experimental errors in catalytic tests for production of synthesis gas. Appl Catal A Gen 242:365–379

    Article  CAS  Google Scholar 

  16. Rehr B, Wilhelm C, Sahm H (1991) Production of Sorbitol and Gluconic acid by permeabilized cells of Zymomonas mobilis. Appl Microbiol Biotechnol 35:144–148

    Article  CAS  Google Scholar 

  17. Sánchez-Manzanares JA, Fernándes-Villacañas MR, Marin-Iniesta F, Laencina J (1993) Determination of lactose by an enzymatic method. Food Chem 46:425–427

    Article  Google Scholar 

  18. Schwaab M, Pinto JC (2007) Análise de Dados experimentais I—fundamentos de Estatística e Estimação de Parâmetros, vol 1. E-papers, Brazil

    Google Scholar 

  19. Silveira MM, Wisbeck E, Lemmel C, Erzinger G, Costa JPL, Bertasso M, Jonas R (1999) Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol 75:99–103

    Article  PubMed  CAS  Google Scholar 

  20. Splechtna B, Petzelbauer I, Baminger U, Haltrich D, Kulbe KD, Nidetzky B (2001) Production of a lactose-free galacto-oligosaccharide mixture by using selective enzymatic oxidation of lactose into lactobionic acid. Enzyme Microbial Technol 29:434–440

    Article  CAS  Google Scholar 

  21. Webb C, Atkinson B (1992) The role of chemical engineering in biotechnology. Chem Eng J 50:9–16

    Article  Google Scholar 

  22. Wilberg KQ, Alves TLM, Nobrega R (1997) Enzymatic catalysis by permeabilized cells. Brazil J Chem Eng 14:17–22

    Google Scholar 

  23. Bard Y (1974) Nonlinear parameter estimation. Academic Press, New York

    Google Scholar 

  24. Zachariou M, Scopes RK (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 167(3):863–869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João B. Severo Júnior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Júnior, J.B.S., Pinto, J.C., Ferraz, H.C. et al. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis . J Ind Microbiol Biotechnol 38, 1575–1585 (2011). https://doi.org/10.1007/s10295-011-0948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0948-1

Keywords

Navigation