Skip to main content
Log in

Gene expression profiling of a pressure-tolerant Listeria monocytogenes Scott A ctsR deletion mutant

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Listeria monocytogenes is a food-borne pathogen of significant threat to public health. High hydrostatic pressure (HHP) treatment can be used to control Listeria monocytogenes in food. The CtsR (class three stress gene repressor) protein negatively regulates the expression of class III heat shock genes. A spontaneous pressure-tolerant ctsR mutant 2-1 that was able to survive under HHP treatment has been identified previously. So far, there is only limited information about the mechanisms of survival and adaptation of this mutant to high pressure. Microarray technology was used to monitor the gene expression profiles of the ctsR mutant 2-1 under HHP treatment. Compared to pressure-treated L. monocytogenes Scott A wild type, 17 genes were up-regulated (>2-fold increase) in the ctsR mutant 2-1, whereas 58 genes were down-regulated (<−2-fold decrease). The entire clpC operon was up-regulated in the ctsR mutant 2-1, indicating that the mutant CtsR protein was not a functional repressor. The increased levels of expression of stress-related genes in ctsR mutant 2-1 may contribute to its survival under high pressure. The reduced expression levels of the genes related to virulence, flagella synthesis, and cell division in the ctsR mutant 2-1 correlate with its characteristics (elongated cells, reduced virulence, and absence of flagella). The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. This study enhances our understanding of how Listeria monocytogenes survives under HHP and may contribute to the design of effective and economically feasible HHP treatment in food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allawi HT, SantaLucia J Jr (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A·A, C·C, G·G, and T·T mismatches. Biochemistry 38:3468–3477

    Article  PubMed  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Autret N, Raynaud C, Dubail I, Berche P, Charbit A (2003) Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun 71(8):4463–4471

    Article  PubMed  CAS  Google Scholar 

  4. Bowman JP, Bittencourt CR, Ross T (2008) Differential gene expression of Listeria monocytogenes during high hydrostatic pressure processing. Microbiology 154:462–475

    Article  PubMed  CAS  Google Scholar 

  5. Derré I, Rapoport G, Devine K, Rose M, Msadek T (1999) ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol Microbiol 32(3):581–593

    Article  PubMed  Google Scholar 

  6. Derré I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 31(1):117–131

    Article  PubMed  Google Scholar 

  7. Derré I, Rapoport G, Msadek T (2000) The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol Microbiol 38(2):335–347

    Article  PubMed  Google Scholar 

  8. Dobbin K, Shih JH, Simon R (2003) Questions and answers on design of dual-label microarrays for identifying differentially expressed genes. J Natl Cancer Inst 95(18):1362–1369

    PubMed  Google Scholar 

  9. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55(3):476–511

    PubMed  CAS  Google Scholar 

  10. Fuhrmann J, Schmidt A, Spiess S, Lehner A, Turgay K, Mechtler K, Charpentier E, Clausen T (2009) McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324(5932):1323–1327

    Article  PubMed  CAS  Google Scholar 

  11. Hu Y, Raengpradub S, Schwab U, Loss C, Orsi RH, Wiedmann M, Boor KJ (2007) Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Appl Environ Microbiol 73(24):7967–7980

    Article  PubMed  CAS  Google Scholar 

  12. Ishii A, Oshima T, Sato T, Nakasone K, Mori H, Kato C (2005) Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9(1):65–73

    Article  PubMed  CAS  Google Scholar 

  13. Joerger RD, Chen H, Kniel KE (2006) Characterization of a spontaneous, pressure-tolerant Listeria monocytogenes Scott A ctsR deletion mutant. Foodborne Pathog Dis 3(2):196–202

    Article  PubMed  CAS  Google Scholar 

  14. Karatzas KA, Bennik MH (2002) Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure. Appl Environ Microbiol 68(7):3183–3189

    Article  PubMed  CAS  Google Scholar 

  15. Karatzas KA, Wouters JA, Gahan CG, Hill C, Abee T, Bennik MH (2003) The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol Microbiol 49(5):1227–1238

    Article  PubMed  CAS  Google Scholar 

  16. Karatzas KA, Valdramidis VP, Wells-Bennik MH (2005) Contingency locus in ctsR of Listeria monocytogenes Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl Environ Microbiol 71(12):8390–8396

    Article  PubMed  CAS  Google Scholar 

  17. Kirstein J, Dougan DA, Gerth U, Hecker M, Turgay K (2007) The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J 26(8):2061–2070

    Article  PubMed  CAS  Google Scholar 

  18. Krüger E, Hecker M (1998) The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180(24):6681–6688

    PubMed  Google Scholar 

  19. Krüger E, Witt E, Ohlmeier S, Hanschke R, Hecker M (2000) The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J Bacteriol 182(11):3259–3265

    Article  PubMed  Google Scholar 

  20. Krüger E, Zühlke D, Witt E, Ludwig H, Hecker M (2001) Clp-mediated proteolysis in gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20(4):852–863

    Article  PubMed  Google Scholar 

  21. Liu Y, Ream A (2008) Gene expression profiling of Listeria monocytogenes strain F2365 during growth in ultrahigh-temperature-processed skim milk. Appl Environ Microbiol 74(22):6859–6866

    Article  PubMed  CAS  Google Scholar 

  22. Malone AS, Chung YK, Yousef AE (2006) Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol 72:2661–2671

    Article  PubMed  CAS  Google Scholar 

  23. Mañas P, Mackey BM (2004) Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: relationship with cell death. Appl Environ Microbiol 70(3):1545–1554

    Article  PubMed  Google Scholar 

  24. Metrick C, Hoover DG, Farkas DF (1989) Effects of high hydrostatic pressure on heat-resistant and heat-sensitive strains of Salmonella. J Food Sci 54:1547–1549

    Article  Google Scholar 

  25. Miethke M, Hecker M, Gerth U (2006) Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol 188(13):4610–4619

    Article  PubMed  CAS  Google Scholar 

  26. Nair S, Frehel C, Nguyen L, Escuyer V, Berche P (1999) ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes. Mol Microbiol 31(1):185–196

    Article  PubMed  CAS  Google Scholar 

  27. Nair S, Derré I, Msadek T, Gaillot O, Berche P (2000) CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Mol Microbiol 35(4):800–811

    Article  PubMed  CAS  Google Scholar 

  28. Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM (2004) Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32(8):2386–2395

    Article  PubMed  CAS  Google Scholar 

  29. Niven GW, Miles CA, Mackey BM (1999) The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: and in vivo study using differential scanning calorimetry. Microbiology 145(Pt 2):419–425

    Article  PubMed  CAS  Google Scholar 

  30. Qiu R, Pei W, Zhang L, Lin J, Ji G (2005) Identification of the putative staphylococcal AgrB catalytic residues involving the proteolytic cleavage of AgrD to generate autoinducing peptide. J Biol Chem 280(17):16695–16704

    Article  PubMed  CAS  Google Scholar 

  31. Riedel CU, Monk IR, Casey PG, Waidmann MS, Gahan CG, Hill C (2009) AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 71(5):1177–1189

    Article  PubMed  CAS  Google Scholar 

  32. Ritz M, Tholozan JL, Federighi M, Pilet MF (2001) Morphological and physiological characterization of Listeria monocytogenes subjected to high hydrostatic pressure. Appl Environ Microbiol 67(5):2240–2247

    Article  PubMed  CAS  Google Scholar 

  33. Van Boeijen IK, Chavaroche AA, Valderrama WB, Moezelaar R, Zwietering MH, Abee T (2010) Population diversity of Listeria monocytogenes LO28: phenotypic and genotypic characterization of variants resistant to high hydrostatic pressure. Appl Environ Microbiol 76(7):2225–2233

    Article  PubMed  Google Scholar 

  34. Varmanen P, Ingmer H, Vogensen FK (2000) ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression. Microbiology 146:1447–1455

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Peter Cook and Ms. Guoping Bao for their excellent work on scanning electron microscopy. We are grateful to Anna Porto-Fett, John Luchansky, Brad Shoyer, and Jeffery Call for their work on HHP treatments. We appreciate Dr. Pina Fratamico and Dr. James Smith (USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Liu.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 554 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Ream, A., Joerger, R.D. et al. Gene expression profiling of a pressure-tolerant Listeria monocytogenes Scott A ctsR deletion mutant. J Ind Microbiol Biotechnol 38, 1523–1533 (2011). https://doi.org/10.1007/s10295-011-0940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-0940-9

Keywords

Navigation