Skip to main content
Log in

A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Experiments based on a 23 central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar–alcohol mill. The independent variables selected for study were temperature, varied from 112.5°C to 157.5°C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adsul MG, Ghule JE, Shaikh H, Singh R, Bastawde KB, Gokhale DV, Varma AJ (2005) Enzymatic hydrolysis of delignified bagasse polysaccharides. Carbohydr Polym 62:6–10. doi:10.1016/j.carbpol.2005.07.010

    Article  CAS  Google Scholar 

  2. Aguilar R, Ramírez JA, Garrote G, Vásquez M (2002) Kinetic study of the acid hydrolysis of sugarcane bagasse. J Food Eng 55:309–318. doi:10.1016/S0260-8774(02)00106-1

    Article  Google Scholar 

  3. Barton FE (1988) Chemistry of lignocellulose: methods of analysis and consequences of structures. Anim Feed Sci Tech 21:279–286. doi:10.1016/0377-8401(88)90107-1

    Article  CAS  Google Scholar 

  4. Box GEP, Hunter WG, Hunter JSS (1978) Statistics for experimenters, 1st edn. Wiley, New York

    Google Scholar 

  5. Calle FR, Cortez LAB (1998) Towards proalcohol II. A review of the Brazilian bioethanol programme. Biomass Bioenergy 14:115–124. doi:10.1016/S0961-9534(97)10020-4

    Article  Google Scholar 

  6. Canettieri EV, Rocha GJM, Carvalho JA Jr, Almeida e Silva JB (2007) Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresour Technol 98:422–428. doi:10.1016/j.biortech.2005.12.012

    Article  PubMed  CAS  Google Scholar 

  7. Canilha L, Carvalho W, Almeida e Silva JB (2006) Xylitol bioproduction from wheat straw: hemicellulosic hydrolysis and hydrolysate fermentation. J Sci Food Agric 86:1371–1376. doi:10.1002/jsfa.2524

    Article  CAS  Google Scholar 

  8. Canilha L, Carvalho W, Felipe MGA, Almeida e Silva JB, Giulietti M (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161:84–92. doi:10.1007/s12010-009-8792-8

    Article  PubMed  CAS  Google Scholar 

  9. Carvalho W, Batista MA, Canilha L, Santos JC, Converti A, Silva SS (2004) Sugarcane bagasse hydrolysis with phosphoric and sulfuric acid and hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 79:1308–1312. doi:10.1002/jctb.1131

    Article  CAS  Google Scholar 

  10. Cerqueira Leite RC, Leal MRLV, Cortez LAB, Griffin WM, Scandiffio MIG (2009) Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy 34:655–661. doi:10.1016/j.energy.2008.11.001

    Article  Google Scholar 

  11. Conab (2010) Acompanhamento da Safra Brasileira de Cana-de-Açúcar. Segundo Levantamento—Agosto/10. Available from http://www.conab.gov.br. Accessed September 07, 2010

  12. Ensinas A, Modesto M, Nebra SA, Serra L (2009) Reduction of irreversibility generation in sugar and ethanol production from sugarcane. Energy 34:680–688. doi:10.1016/j.energy.2008.06.001

    Article  CAS  Google Scholar 

  13. Gouveia ER, Nascimento RT, Souto Maior AM, Rocha GJM (2009) Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Quim Nova 32:1500–1503

    Article  CAS  Google Scholar 

  14. Grohmann K, Torget R, Himmel M (1985) Optimization of dilute acid pretreatment of biomass. Biotechnol Bioeng Symp 14:137–157

    Google Scholar 

  15. Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis: new tools for compositional analysis of corn stover feedstocks and process intermediates from ethanol production. Appl Biochem Biotechnol 105:5–16. doi:10.1385/ABAB:105:1-3:5

    Article  PubMed  Google Scholar 

  16. Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839. doi:10.2135/cropsci2004.0238

    Article  CAS  Google Scholar 

  17. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  PubMed  CAS  Google Scholar 

  18. Jackson MG (1977) Review article: the alkali treatment of straws. Anim Feed Sci Tech 2:105–130. doi:10.1016/0377-8401(77)90013-X

    Article  Google Scholar 

  19. Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134. doi:10.1002/bbb.4

    Article  Google Scholar 

  20. Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380. doi:10.1016/S0961-9534(02)00066-1

    Article  CAS  Google Scholar 

  21. Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98:3061–3068. doi:10.1016/j.biortech.2006.10.018

    Article  PubMed  CAS  Google Scholar 

  22. Liu C, Wyman CE (2003) The effect of flow rate of compressed hot water on xylan, lignin and total mass removal from corn stover. Ind Eng Chem Res 42:5409–5416. doi:10.1021/ie030458k

    Article  CAS  Google Scholar 

  23. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977. doi:10.1016/j.biortech.2005.01.011

    Article  PubMed  CAS  Google Scholar 

  24. Martin C, Alriksson B, Sjose A, Nilvebrant NO, Jonsson LJ (2007) Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl Biochem Biotechnol 137–140:339–352. doi:10.1007/s12010-007-9063-1

    Article  PubMed  Google Scholar 

  25. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb Technol 43:124–129. doi:10.1016/j.enzmictec.2007.11.006

    Article  CAS  Google Scholar 

  26. Negro MJ, Manzanares P, Oliva JM, Ballesteros I, Ballesteros M (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenergy 25:301–308. doi:10.1016/S0961-9534(03)00017-5

    Article  CAS  Google Scholar 

  27. Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58. doi:10.1385/ABAB:98-100:1-9:49

    Article  PubMed  Google Scholar 

  28. Ohgren K, Bura R, Saddler J, Zachi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 28:2503–2510. doi:10.1016/j.biortech.2006.09.003

    Article  Google Scholar 

  29. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871

    Article  CAS  Google Scholar 

  30. Redding AP, Wang Z, Keshwani DR, Cheng JJ (2010) High temperature dilute acid pretreatment of coastal bermuda grass for enzymatic hydrolysis. Bioresour Technol. doi: 10.1016/j.biortech.2010.09.053

  31. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Products 17:171–176. doi:10.1016/S0926-6690(02)00095-X

    Article  CAS  Google Scholar 

  32. Santos VTO, Esteves PJ, Milagres AMF, Carvalho W (2010) Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pretreated with dilute sulfuric acid. J Ind Microbiol Biotechnol. doi: 10.1007/s10295-010-0888-1

  33. Sasaki M, Adschiri T, Arai K (2003) Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour Technol 86:301–304. doi:10.1016/S0960-8524(02)00173-6

    Article  PubMed  Google Scholar 

  34. Schell DJ, Riley CJ, Dowe N, Farmer J, Ibsen KN, Ruth MF (2004) A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour Technol 91:179–188. doi:10.1016/S0960-8524(03)00167-6

    Article  PubMed  CAS  Google Scholar 

  35. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23:1333–1339. doi:10.1021/bp0702018

    Article  PubMed  CAS  Google Scholar 

  36. Silva SS, Matos ZR, Carvalho W (2005) Effects of sulfuric acid loading and residence time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bioproduction. Biotechnol Progr 21:1449–1452. doi:10.1021/bp0502025

    Article  CAS  Google Scholar 

  37. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Issue Date 4/25/2008. Available from http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed August 22, 2010

  38. Teixeira LC, Linden JC, Schroeder HA (2000) Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass. Appl Biochem Biotechnol 84–86:111–127. doi:10.1385/ABAB:84-86:1-9:111

    Article  PubMed  Google Scholar 

  39. Torget RW, Kim JS, Lee YY (2000) Fundamental aspects of dilute acid hydrolysis/fractionation kinetics of hardwood carbohydrates. 1. Cellulose hydrolysis. Ind Eng Chem Res 39:2817–2825. doi:10.1021/ie990915q

  40. Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68:235–241. doi:10.1016/j.carbpol.2006.12.013

    Article  CAS  Google Scholar 

  41. Zhao X, Peng F, Cheng K, Liu D (2009) Enhancement of the enzymatic digestibility of sugarcane bagasse by alkali-peracetic acid pretreatment. Enzyme Microb Technol 44:17–23. doi:10.1016/j.enzmictec.2008.07.011

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Fundação de Amparo a Pesquisa do Estado de São Paulo and Conselho Nacional de Desenvolvimento Científico e Tecnológico, and thank Patricia F. Castro and Laura D. F. O. Barbosa for skillful laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Carvalho.

Additional information

This article is based on a presentation at the 32nd Symposium on Biotechnology for Fuels and Chemicals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canilha, L., Santos, V.T.O., Rocha, G.J.M. et al. A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol 38, 1467–1475 (2011). https://doi.org/10.1007/s10295-010-0931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0931-2

Keywords

Navigation