Skip to main content
Log in

Production of heterologous polygalacturonase I from Aspergillus kawachii in Saccharomyces cerevisiae in batch and fed-batch cultures

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The pg1 gene from the filamentous fungus Aspergillus kawachii, which codifies for an acid polygalacturonase, was cloned into the pYES2 expression vector, giving rise to the pYES2:pg1ΔI construct. Engineered Saccharomyces cerevisiae, transformed with pYES2:pg1ΔI construct, both expressed and exported an active polygalacturonase with a MW of ~60 kDa and an isoelectric point of 3.7, similar to those reported for the wild-type enzyme. The recombinant enzyme has the ability to hydrolyze polygalacturonic acid at pH 2.5. Heterologous PG1 production was studied under controlled conditions in batch and fed-batch systems. A simultaneous addition of glucose and galactose was found to be the most suitable feeding strategy assayed, resulting in a final PG1 production of 50 U/ml. The production process proposed in this study could be applied for the industrial production of a novel and useful polygalacturonase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O′Donovan C, Redaschi N, Yeh LS (2005) The universal protein resource (UniProt). Nucleic Acids Res 33:154–159

    Article  Google Scholar 

  2. Becker D and Guarente L (2004) High-efficiency transformation of yeast by electroporation. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular and cell biology, pp 182–186. Gulf Professional Publishing, San Diego

  3. Benson DA, Karsch-Mizrachi I, Lipman DL, Ostell J, Rapp BA, Wheeler DL (2002) GenBank. Nucleic Acids Res 30:17–20

    Article  PubMed  CAS  Google Scholar 

  4. Bussink HJD, Buxton FP, Visser J (1991) Expression and sequence comparison of the Aspergillus niger and Aspergillus tubigensis genes encoding polygalacturonase II. Curr Genet 19:467–474

    Article  PubMed  CAS  Google Scholar 

  5. Contreras Esquivel JC, Hours RA, Voget CE, Mignone CF (1999) Aspergillus kawachii produces an acidic pectin releasing enzyme activity. J Biosci Bioeng 88:48–52

    Article  PubMed  CAS  Google Scholar 

  6. Contreras Esquivel JC, Voget CE (2004) Purification and partial characterization of an acidic polygalacturonase from Aspergillus kawachii. J Biotechnol 110:21–28

    Article  PubMed  CAS  Google Scholar 

  7. Cooney CL, Wang H, Wand D (1977) Computer-aided material balancing for prediction of fermentation parameters. Biotechnol Bioeng 19:55–67

    Article  PubMed  CAS  Google Scholar 

  8. Erickson LE, Minkevich IG, Eroshin VK (1978) Application of mass and energy balance regularities in fermentation. Biotechnol Bioeng 20:1595–1621

    Article  CAS  Google Scholar 

  9. Fernandez-Gonzalez M, Úbeda JF, Cordero-Otero RR, Thanvanthri Gururajan V, Briones AI (2005) Engineering of an oenological Saccharomyces cerevisiae strain with pectinolytic activity and its effect on wine. Int J Food Microbiol 102:173–183

    Article  PubMed  CAS  Google Scholar 

  10. Ferreira BS, Calado CRC, van Keulen F, Fonseca LP, Cabral JMS, da Fonseca MMR (2003) Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Appl Microbiol Biotechnol 61:69–76

    PubMed  CAS  Google Scholar 

  11. Görgens J, van Zyl WH, Knoetze J, Hahn MG (2000) The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 73:238–245

    Article  Google Scholar 

  12. Hara Y, Hinoki Y, Shimoi H, Ito K (2003) Cloning and sequence analysis of endoglucanase genes from an industrial fungus, Aspergillus kawachii. Biosci Biotechnol Biochem 67:2010–2013

    Article  PubMed  CAS  Google Scholar 

  13. Hirose N, Kishida M, Kawasaki H, Sakai T (1998) Molecular cloning and expression of a polygalacturonase gene in Saccharomyces cerevisiae. J Ferment Bioeng 86:332–334

    Article  CAS  Google Scholar 

  14. Ito K, Ikemazu T, Ishikawa T (1992) Cloning and sequencing of the xynA gene encoding xylanase A of Aspergillus kawachii. Biosci Biotechnol Biochem 56:906–912

    Article  PubMed  CAS  Google Scholar 

  15. Julius D, Schekman R, Thorner J (1984) Glycosylation and processing of prepro-α-factor through the yeast secretory pathway. Cell 36:309–318

    Article  PubMed  CAS  Google Scholar 

  16. Mikami S, Iwano K, Shinoki S, Shimada T (1987) Purification and some properties of acid-stable -amylases from shoshu koji (Aspergillus kawachii). Agric Biol Chem 51:2495–2501

    Article  CAS  Google Scholar 

  17. Nagai M, Ozawa A, Katsuragi T, Kawasaki H, Sakai T (2000) Cloning and heterologous expression of gene encoding a polygalacturonase from Aspergillus awamori. Biosci Biotechnol Biochem 64:1580–1587

    Article  PubMed  CAS  Google Scholar 

  18. Nakamura T, Hours RA, Sakai T (1995) Enzymatic maceration of vegetables with protopectinases. J Food Sci 60:468–472

    Article  CAS  Google Scholar 

  19. Nielsen H, Engelbrecht J, Brunak S, Von Heijne G (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599

    Article  PubMed  CAS  Google Scholar 

  20. Romanos MA, Scorer CA, Clare JJ (1992) Foreing gene expression in yeast: a review. Yeast 8:423–488

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook J, Fritsch E, and Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, New York

  22. Shi X, Chabare K, Budai A, Zhu Z (2003) Iron requirement for GAL gene induction in the yeast Saccharomyces cerevisiae. J Biol Chem 278:43110–43113

    Article  PubMed  CAS  Google Scholar 

  23. Smith BJ (1984) Methods in molecular biology. Walker JM (ed), Humana, Clifton

  24. Voragen AG, Pilnik W, Thibault JF, Axelos MA, Renard C (1995) Pectins. In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp 287–339

    Google Scholar 

  25. Yagi F, Fan J, Tadera K, Kobayashi A (1986) Purification and characterization of carboxyl proteinase from Aspergillus kawachii. Agric Biol Chem 50:1029–1033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by CONICET (Consejo Nacional de Ciencia y Tecnología). PDG and SFC are members of the Research Career of CONICET; NLR, DJB and GEO hold a fellowship of CONICET. The authors wish to thank Dr. Donald F. Haggerty, a retired career investigator and native English speaker, for editing the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Cavalitto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, N.L., Ortiz, G.E., Baruque, D.J. et al. Production of heterologous polygalacturonase I from Aspergillus kawachii in Saccharomyces cerevisiae in batch and fed-batch cultures. J Ind Microbiol Biotechnol 38, 1437–1447 (2011). https://doi.org/10.1007/s10295-010-0929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0929-9

Keywords

Navigation