Skip to main content
Log in

Post-translational processing of modular xylanases from Streptomyces is dependent on the carbohydrate-binding module

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Xylanases are very often modular enzymes composed of one or more catalytic domains and carbohydrate-binding modules (CBMs) connected by a flexible linker region. Usually, when these proteins are processed they lose their carbohydrate-binding capacity. Here, the role of the linker regions and cellulose- or xylan-binding domains in the processing of Xys1L from Streptomyces halstedii JM8 and Xyl30L from Streptomyces avermitilis UAH30 was studied. Xys1 variants with different linker lengths were tested, these being unable to avoid protein processing. Moreover, several fusion proteins between the Xys1 and Xyl30 domains were obtained and their proteolytic stability was studied. We demonstrate that CBM processing takes place even in the complete absence of the linker sequence. We also show that the specific carbohydrate module determines this cleavage in the proteins studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adham SA, Honrubia P, Díaz M, Fernández-Ábalos JM, Santamaría RI, Gil JA (2001) Expression of the genes coding for the xylanase Xys1 and the cellulase cel1 from the straw-decomposing Streptomyces halstedii JM8 cloned into the amino-acid producer Brevibacterium lactofermentum ATCC13869. Arch Microbiol 177:91–97

    Article  PubMed  CAS  Google Scholar 

  2. Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    Article  PubMed  CAS  Google Scholar 

  3. Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11–3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 27:459–466

    Article  PubMed  CAS  Google Scholar 

  4. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  PubMed  CAS  Google Scholar 

  5. Bernfeld P (1951) Enzymes of starch degradation and synthesis. In: Nord FF (ed) Advances in enzymology, vol XII. Interscience, New York, pp 379–428

    Google Scholar 

  6. Biely P, Mislovicova D, Toman R (1985) Soluble chromogenic substrates for the assay of endo-1,4-β-xylanases and endo-1,4-β-glucanases. Anal Biochem 144:142–146

    Article  PubMed  CAS  Google Scholar 

  7. Black GW, Rixon JE, Clarke JH, Hazlewood GP, Ferreira LM, Bolam DN, Gilbert HJ (1997) Cellulose binding domains and linker sequences potentiate the activity of hemicellulases against complex substrates. J Biotechnol 57:59–69

    Article  PubMed  CAS  Google Scholar 

  8. Canals A, Vega MC, Gomis-Rüth FX, Díaz M, Santamaría RI, Coll M (2003) Structure of xylanase Xys1∆ from Streptomyces halstedii. Acta Crystallogr D59:1447–1453

    CAS  Google Scholar 

  9. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  PubMed  CAS  Google Scholar 

  10. Fernández-Abalos JM, Reviejo V, Díaz M, Rodríguez S, Leal F, Santamaría RI (2003) Posttranslational processing of the xylanase Xys1L from Streptomyces halstedii JM8 is carried out by secreted serine proteases. Microbiology 149:1623–1632

    Article  PubMed  Google Scholar 

  11. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  12. Hernández A, López JC, Santamaría R, Díaz M, Fernández-Ábalos JM, Copa-Patino JL, Soliveri J (2008) Xylan-binding xylanase Xyl30 from Streptomyces avermitilis: cloning, characterization, and overproduction in solid-state fermentation. Int Microbiol 11:133–141

    PubMed  Google Scholar 

  13. Hopwood DA, Bibb JM, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  14. Kieser T, Hopwood DA, Bibb JM, Chater KF, Buttner MJ (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  15. Kittur FS, Mangala SL, Rus’d AA, Kitaoka M, Tsujibo H, Hayashi K (2003) Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan. FEBS Lett 549:147–151

    Article  PubMed  CAS  Google Scholar 

  16. Li N, Shi P, Yang P, Wang Y, Luo H, Bai Y, Zhou Z, Yao B (2009) A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl Microbiol Biotechnol 83:99–107

    Article  PubMed  CAS  Google Scholar 

  17. Lu P, Feng MG (2008) Bifunctional enhancement of a beta-glucanase-xylanase fusion enzyme by optimization of peptide linkers. Appl Microbiol Biotechnol 79:579–587

    Article  PubMed  CAS  Google Scholar 

  18. Mangala SL, Kittur FS, Nishimoto M, Sakka K, Ohmiya K, Kitaoka M, Hayashi K (2003) Fusion of family VI cellulose binding domains to Bacillus halodurans xylanase increases its catalytic activity and substrate-binding capacity to insoluble xylan. J Mol Catal B Enzym 21:221–230

    Article  CAS  Google Scholar 

  19. Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  20. Rodríguez S, Santamaría RI, Fernández-Ábalos JM, Díaz M (2005) Identification of the sequences involved in the glucose-repressed transcription of the Streptomyces halstedii JM8 xysA promoter. Gene 351:1–9

    Article  PubMed  Google Scholar 

  21. Ruiz-Arribas A, Fernández-Abalos JM, Garda AL, Sánchez P, Santamaría RI (1995) Overproduction, purification and biochemical characterization of one xylanase (Xys1) from Streptomyces halstedii JM8. Appl Environ Microbiol 61:2414–2419

    PubMed  CAS  Google Scholar 

  22. Ruiz-Arribas A, Sanchez P, Calvete JJ, Raida M, Fernandez-Abalos JM, Santamaria RI (1997) Analysis of xysA, a gene from Streptomyces halstedii JM8 that encodes a 45-kilodalton modular xylanase, Xys1. Appl Environ Microbiol 63:2983–2988

    PubMed  CAS  Google Scholar 

  23. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant CSI02A05 from the “Junta de Castilla y León” to R. Santamaría. Thanks are also due to MJ Jiménez Rufo for her excellent technical work, and to N. Skinner for supervising the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Díaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, M., Fernández-Ábalos, J.M., Soliveri, J. et al. Post-translational processing of modular xylanases from Streptomyces is dependent on the carbohydrate-binding module. J Ind Microbiol Biotechnol 38, 1419–1426 (2011). https://doi.org/10.1007/s10295-010-0927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0927-y

Keywords

Navigation