Skip to main content
Log in

Evaluation of the acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Acetaldehyde is relevant for wine aroma, wine color, and microbiological stability. Yeast are known to play a crucial role in production and utilization of acetaldehyde during fermentations but comparative quantitative data are scarce. This research evaluated the acetaldehyde metabolism of 26 yeast strains, including commercial Saccharomyces and non-Saccharomyces, in a reproducible resting cell model system. Acetaldehyde kinetics and peak values were highly genus, species, and strain dependent. Peak acetaldehyde values varied from 2.2 to 189.4 mg l−1 and correlated well (r 2 = 0.92) with the acetaldehyde production yield coefficients that ranged from 0.4 to 42 mg acetaldehyde per g of glucose in absence of SO2. S. pombe showed the highest acetaldehyde production yield coefficients and peak values. All other non-Saccharomyces species produced significantly less acetaldehyde than the S. cerevisiae strains and were less affected by SO2 additions. All yeast strains could degrade acetaldehyde as sole substrate, but the acetaldehyde degradation rates did not correlate with acetaldehyde peak values or acetaldehyde production yield coefficients in incubations with glucose as sole substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anonymous (2009) The maximum sulphur dioxide content of wines. Off J Eur Union L193 Annex I B:26–29

    Google Scholar 

  2. Bely M, Stoeckle P, Masneuf-Pomarede I, Dubourdieu D (2008) Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Int J Food Microbiol 122:312–320

    Article  PubMed  CAS  Google Scholar 

  3. Bisson LF (2004) Biotechnology of wine yeast. Food Biotechnol 18:63–96

    Article  CAS  Google Scholar 

  4. Cabranes C, Moreno J, Mangas JJ (1998) Cider production with immobilized Leuconostoc oenos. J Inst Brew 104:127–130

    CAS  Google Scholar 

  5. Cheraiti N, Guezenec S, Salmon JM (2010) Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character. Appl Microbiol Biotechnol 86:693–700

    Article  PubMed  CAS  Google Scholar 

  6. Cheraiti N, Sauvage FX, Salmon JM (2008) Acetaldehyde addition throughout the growth phase alleviates the phenotypic effect of zinc deficiency in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77:1093–1109

    Article  PubMed  CAS  Google Scholar 

  7. Clarke RJ, Bakker J (2004) Wine flavour chemistry. Blackwell, Oxford

    Book  Google Scholar 

  8. Cortes MB, Moreno J, Zea L, Moyano L, Medina M (1998) Changes in aroma compounds of sherry wines during their biological aging carried out by Saccharomyces cerevisiae races bayanus and capensis. J Agric Food Chem 46:2389–2394

    Article  CAS  Google Scholar 

  9. Delfini C, Formica JV (2001) Wine microbiology: science and technology. Marcel Dekker, New York

    Google Scholar 

  10. Dharmadhikari MR, Wilker KL (1998) Deacidification of high malate must with Schizosaccharomyces pombe. Am J Enol Vitic 49:408–412

    CAS  Google Scholar 

  11. Diaz-Montano DM, Delia ML, Estarron-Espinosa M, Strehaiano P (2008) Fermentative capability and aroma compound production isolated from Agave tequilana Weber juice. Enzyme Microb Technol 42:608–616

    Article  CAS  Google Scholar 

  12. Ferreira ACD, Barbe JC, Bertrand A (2002) Heterocyclic acetals from glycerol and acetaldehyde in port wines: evolution with aging. J Agric Food Chem 50:2560–2564

    Article  Google Scholar 

  13. Fleet GH (1993) Wine microbiology and biotechnology. Harwood, Chur

    Google Scholar 

  14. Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  PubMed  CAS  Google Scholar 

  15. Herrero M, Garcia LA, Diaz M (2003) The effect of SO2 on the production of ethanol, acetaldehyde, organic acids, and flavor volatiles during industrial cider fermentation. J Agric Food Chem 51:3455–3459

    Article  PubMed  CAS  Google Scholar 

  16. Jussier D, Dubé Morneau A, Mira de Orduña R (2006) Effect of simultaneous inoculation of yeast and bacteria on fermentation kinetics and key wine parameters during white winemaking. Appl Environ Microbiol 72:221–227

    Article  PubMed  CAS  Google Scholar 

  17. Lachenmeier DW, Kanteres F, Rehm J (2009) Carcinogenicity of acetaldehyde in alcoholic beverages: risk assessment outside ethanol metabolism. Addiction 104:533–550

    Article  PubMed  Google Scholar 

  18. Lachenmeier DW, Sohnius EM (2008) The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: evidence from a large chemical survey. Food Chem Toxicol 46:2903–2911

    Article  PubMed  CAS  Google Scholar 

  19. Li E, Mira de Orduña R (2010) A rapid method for the determination of microbial biomass by dry weight using a moisture analyzer with an infrared heating source and an analytical balance. Lett Appl Microbiol 50:283–288

    Article  PubMed  CAS  Google Scholar 

  20. Liu S-Q, Pilone GJ (2000) An overwiew of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int J Food Sci Technol 35:49–61

    Article  CAS  Google Scholar 

  21. Longo E, Velazquez JB, Sieiro C, Cansado J, Calo P, Villa TG (1992) Production of higher alcohols, ethyl-acetate, acetaldehyde and other compounds by 14 Saccharomyces cerevisiae wine strains isolated from the same region (Salnes, NW Spain). World J Microbiol Biotechnol 8:539–541

    Article  CAS  Google Scholar 

  22. Mira de Orduña R, Liu S-Q, Patchett ML, Pilone GJ (2000) Kinetics of the arginine metabolism of malolactic wine lactic acid bacteria Lactobacillus buchneri CUC-3 and Oenococcus oeni Lo111. J Appl Microbiol 89:547–552

    Article  PubMed  Google Scholar 

  23. Miyake T, Shibamoto T (1993) Quantitative analysis of acetaldehyde in foods and beverages. J Agric Food Chem 41:1968–1970

    Article  CAS  Google Scholar 

  24. Moreno-Arribas MV, Polo MC (2008) Wine chemistry and biochemistry. Springer, New York

    Google Scholar 

  25. Neuberg C, Hirsch J, Reinfurth E (1920) The three fermentation-forms of sugar, their coherences and balance. Biochem Zeitschr 105:307–336

    CAS  Google Scholar 

  26. Neuberg C, Reinfurth E (1918) The determination of the aldehyde stage in alcoholic fermentation an experimental argument for the acetaldehyde pyrunic acid theory. Biochem Zeitschr 89:365–414

    CAS  Google Scholar 

  27. Osborne JP, Dubé Morneau A, Mira de Orduña R (2006) Degradation of free and sulphur-dioxide-bound acetaldehyde by malolactic lactic acid bacteria in white wine. J Appl Microbiol 101:474–479

    Article  PubMed  CAS  Google Scholar 

  28. Osborne JP, Mira de Orduña R, Liu S-Q, Pilone GJ (2000) Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiol Lett 191:51–55

    Article  PubMed  CAS  Google Scholar 

  29. Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  PubMed  CAS  Google Scholar 

  30. Romano P, Caruso M, Capece A, Lipani G, Paraggio M, Fiore C (2003) Metabolic diversity of Saccharomyces cerevisiae strains from spontaneously fermented grape musts. World J Microbiol Biotechnol 19:311–315

    Article  CAS  Google Scholar 

  31. Romano P, Suzzi G, Turbanti L, Polsinelli M (1994) Acetaldehyde production in Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 118:213–218

    Article  PubMed  CAS  Google Scholar 

  32. Romero C, Bakker J (1999) Interactions between grape anthocyanins and pyruvic acid, with effect of pH and acid concentration on anthocyanin composition and color in model solutions. J Agric Food Chem 47:3130–3139

    Article  PubMed  CAS  Google Scholar 

  33. Saucier C, Little D, Glories Y (1997) First evidence of acetaldehyde-flavanol condensation products in red wine. Am J Enol Vitic 48:370–373

    CAS  Google Scholar 

  34. Schlegel HG (1992) Allgemeine Mikrobiologie. Thieme, Stuttgart

    Google Scholar 

  35. Somers TC, Wescombe LG (1982) Red wine quality: the critical role of SO2 during vinification and conservation. Austr Grapegrower Winemaker 19:68–74

    Google Scholar 

  36. Then R, Radler F (1970) Regulation of acetaldehyde concentration in culture medium during fermentation of glucose by Saccharomyces cerevisiae. Archiv fur Mikrobiologie 72:60–67

    Google Scholar 

  37. Timberlake CF, Bridle P (1977) Anthocyanins: colour augmentation with catechin and acetaldehyde. J Sci Food Agric 28:539–544

    Article  PubMed  CAS  Google Scholar 

  38. Valles BS, Bedrinana RP, Queipo AL, Alonso JJM (2008) Screening of cider yeasts for sparkling cider production (Champenoise method). Food Microbiol 25:690–697

    Article  Google Scholar 

  39. Wildenradt HL, Singleton VL (1974) The production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am J Enol Vitic 25:119–126

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the China Scholarship Council for supporting Erhu Li (State Scholarship Fund No. 2008630061). The authors also wish to thank Lallemand Inc. and Prof. Yanlin Liu for providing yeast strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Mira de Orduña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, E., Mira de Orduña, R. Evaluation of the acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system. J Ind Microbiol Biotechnol 38, 1391–1398 (2011). https://doi.org/10.1007/s10295-010-0924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0924-1

Keywords

Navigation