Skip to main content
Log in

Cell physiology rather than enzyme kinetics can determine the efficiency of cytochrome P450-catalyzed C–H-oxyfunctionalization

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Cell physiology is a critical factor determining the efficiency of reactions performed by microbial biocatalysts. In order to develop an efficient biotransformation procedure for the hydroxylation of (S)-limonene to (S)-perillyl alcohol by recombinant Pseudomonas putida cells harboring the cytochrome P450 monooxygenase CYP153A6, physiological parameters were optimized. The previously reported synthesis of (S)-perillyl alcohol by P. putida GPo12 was based on complex and sensitive octane feeding strategies (van Beilen et al. in Appl Environ Microbiol 71:1737–1744, 2005), indicating the pivotal role of cell physiology. In contrast to previous findings, the screening of different carbon sources showed that glycerol and citrate are suitable alternatives to octane allowing high specific limonene hydroxylation activities. The use of P. putida KT2440 as an alternative host strain and citrate as the carbon source improved practical handling and allowed a 7.5-fold increase of the specific activity (to 22.6 U g −1CDW ). In two-liquid-phase biotransformations, 4.3 g of (S)-perillyl alcohol L −1tot were produced in 24 h, representing a sixfold improvement in productivity compared to previously reported results. It is concluded that, for selective cytochrome P450-based hydrocarbon oxyfunctionalizations by means of living microbial cells, the relationship between cell physiology and the target biotransformation is crucial, and that understanding the relationship should guide biocatalyst and bioprocess design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bagdasarian M, Lurz R, Ruckert B, Franklin FC, Bagdasarian MM, Frey J, Timmis KN (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247

    Article  PubMed  CAS  Google Scholar 

  2. Bar R (1986) Phase toxicity in multiphase biocatalysis. Trends Biotechnol 4:167

    Article  CAS  Google Scholar 

  3. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  PubMed  CAS  Google Scholar 

  4. Blank LM, Ebert BE, Bühler B, Schmid A (2008) Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint-based modeling and experimental verification. Biotechnol Bioeng 100:1050–1065

    Article  PubMed  CAS  Google Scholar 

  5. Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A (2008) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190

    Article  PubMed  CAS  Google Scholar 

  6. Bühler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons on a technical scale. Biotechnol Bioeng 82:833–842

    Article  PubMed  Google Scholar 

  7. Bühler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Use of the two-liquid phase concept to exploit kinetically controlled multistep biocatalysis. Biotechnol Bioeng 81:683–694

    Article  PubMed  Google Scholar 

  8. Bühler B, Schmid A (2004) Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol 113:183–210

    Article  PubMed  Google Scholar 

  9. Bühler B, Witholt B, Hauer B, Schmid A (2002) Characterization and application of xylene monooxygenase for multistep biocatalysis. Appl Environ Microbiol 68:560–568

    Article  PubMed  Google Scholar 

  10. Chastain DE, Sanders Jr. EW, Sanders CC (1992) Using perillyl alcohol to kill bacteria and yeasts. U.S. patent 5,110,832

  11. Cirino PC, Arnold FH (2002) Protein engineering of oxygenases for biocatalysis. Curr Opin Chem Biol 6:130–135

    Article  PubMed  CAS  Google Scholar 

  12. Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Article  PubMed  CAS  Google Scholar 

  13. Fasan R, Chen MM, Crook NC, Arnold FH (2007) Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting nativelike catalytic properties. Angew Chem Int Ed Engl 46:8414–8418

    Article  PubMed  CAS  Google Scholar 

  14. Flitsch S, Grogan G, Ashcroft D (2002) Oxidation Reactions. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic chemistry, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 1065–1280

    Chapter  Google Scholar 

  15. Funhoff EG, Bauer U, Garcia-Rubio I, Witholt B, van Beilen JB (2006) CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 188:5220–5227

    Article  PubMed  CAS  Google Scholar 

  16. Funhoff EG, Salzmann J, Bauer U, Witholt B, van Beilen JB (2007) Hydroxylation and epoxidation reactions catalyzed by CYP153 enzymes. Enzyme Microb Technol 40:806–812

    Article  CAS  Google Scholar 

  17. Gaal T, Bartlett MS, Ross W, Turnbough CL Jr, Gourse RL (1997) Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278:2092–2097

    Article  PubMed  CAS  Google Scholar 

  18. Gillam EM (2007) Extending the capabilities of nature’s most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. Arch Biochem Biophys 464:176–186

    Article  PubMed  CAS  Google Scholar 

  19. Gupta A, Myrdal PB (2004) Development of a perillyl alcohol topical cream formulation. Int J Pharm 269:373–383

    Article  PubMed  CAS  Google Scholar 

  20. Hartmans S, van der Werf MJ, de Bont JA (1990) Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol 56:1347–1351

    PubMed  CAS  Google Scholar 

  21. Jensen HP, Sharpless KB (1975) Selenium dioxide oxidation of d-limonene. Reinvestigation. J Org Chem 40:264–265

    Article  CAS  Google Scholar 

  22. Julsing MK, Cornelissen S, Bühler B, Schmid A (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 12:177–186

    Article  PubMed  CAS  Google Scholar 

  23. Konopka A (2000) Microbial physiological state at low growth rate in natural and engineered ecosystems. Curr Opin Microbiol 3:244–247

    Article  PubMed  CAS  Google Scholar 

  24. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans—effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    PubMed  CAS  Google Scholar 

  25. Leak DJ, Sheldon RA, Woodley JM, Adlercreutz P (2009) Biocatalysts for selective introduction of oxygen. Biocatal Biotransformation 27:1–26

    Article  CAS  Google Scholar 

  26. Lebedeva IV, Su ZZ, Vozhilla N, Chatman L, Sarkar D, Dent P, Athar M, Fisher PB (2008) Chemoprevention by perillyl alcohol coupled with viral gene therapy reduces pancreatic cancer pathogenesis. Mol Cancer Ther 7:2042–2050

    Article  PubMed  CAS  Google Scholar 

  27. Lee YW, Lee CH, Kim JD, Lee YY, Row KH (2000) Extraction of perillyl alcohol in Korean orange peel by supercritical CO2. Sep Sci Technol 35:1069–1076

    Article  CAS  Google Scholar 

  28. Marshall JA, Sehon CA (1997) Total synthesis of the enantiomer of the furanocembrane rubifolide. J Org Chem 62:4313–4320

    Article  PubMed  CAS  Google Scholar 

  29. Marshall JA, Van Devender EA (2001) Synthesis of (−)-deoxypukalide, the enantiomer of a degradation product of the furanocembranolide pukalide. J Org Chem 66:8037–8041

    Article  PubMed  CAS  Google Scholar 

  30. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, dos Santos V, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Lee PC, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Dusterhoft A, Tummler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  PubMed  CAS  Google Scholar 

  31. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385

    PubMed  CAS  Google Scholar 

  32. Opdyke DL (1981) Monographs on fragrance raw materials. Food Cosmet Toxicol 19:237–254

    Article  PubMed  CAS  Google Scholar 

  33. Panke S, Witholt B, Schmid A, Wubbolts MG (1998) Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043

    PubMed  CAS  Google Scholar 

  34. Park JB, Bühler B, Panke S, Witholt B, Schmid A (2007) Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent-tolerant Pseudomonas sp. strain VLB120ΔC. Biotechnol Bioeng 98:1219–1229

    Article  PubMed  CAS  Google Scholar 

  35. Peterson JA, Coon MJ (1968) Enzymatic ω-oxidation. III. Purification and properties of rubredoxin, a component of the ω-hydroxylation system of Pseudomonas oleovorans. J Biol Chem 243:329–334

    PubMed  CAS  Google Scholar 

  36. Preusting H, van Houten R, Hoefs A, van Langenberghe EK, Favre-Bulle O, Witholt B (1993) High cell density cultivation of Pseudomonas oleovorans: growth and production of poly(3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems. Biotechnol Bioeng 41:550–556

    Article  PubMed  CAS  Google Scholar 

  37. Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VA (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4:e1000210

    Article  PubMed  Google Scholar 

  38. Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916

    PubMed  CAS  Google Scholar 

  39. Ruijssenaars HJ, Sperling EM, Wiegerinck PH, Brands FT, Wery J, de Bont JA (2007) Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J Biotechnol 131:205–208

    Article  PubMed  CAS  Google Scholar 

  40. Sakuda Y (1969) The oxidation of limonene with selenium dioxide. Bull Chem Soc Jpn 42:3348–3349

    Article  CAS  Google Scholar 

  41. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  42. Schneider S, Wubbolts MG, Sanglard D, Witholt B (1998) Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for in vivo application of cytochrome P-450(BM-3) monooxygenase. Appl Environ Microbiol 64:3784–3790

    PubMed  CAS  Google Scholar 

  43. Shimizu N, Mizogughi A, Murakami K, Noge K, Mori N, Nishida R, Kuwahara Y (2006) Synthesis of (+)-(S)-isorobinal together with its antipod, a cyclic monoterpene functioning as the sex pheromone of Rhizoglyphus setosus and its distribution among Astigmata. J Pestic Sci 31:311–315

    Article  CAS  Google Scholar 

  44. Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    PubMed  CAS  Google Scholar 

  45. Smits TH, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from Gram-negative and Gram-positive bacteria. J Bacteriol 184:1733–1742

    Article  PubMed  CAS  Google Scholar 

  46. Staijen IE, Marcionelli R, Witholt B (1999) The P-alkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk(+) recombinants. J Bacteriol 181:1610–1616

    PubMed  CAS  Google Scholar 

  47. Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  PubMed  CAS  Google Scholar 

  48. Sun ZY, Ramsay JA, Guay M, Ramsay BA (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Environ Microbiol 71:423–431

    CAS  Google Scholar 

  49. Ueda T, Coon MJ (1972) Enzymatic ω-oxidation. VII. Reduced diphosphopyridine nucleotide-rubredoxin reductase: properties and function as an electron carrier in ω-hydroxylation. J Biol Chem 247:5010–5016

    PubMed  CAS  Google Scholar 

  50. van Beilen JB, Duetz WA, Schmid A, Witholt B (2003) Practical issues in the application of oxygenases. Trends Biotechnol 21:170–177

    Article  PubMed  Google Scholar 

  51. van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  PubMed  Google Scholar 

  52. van Beilen JB, Funhoff EG, van Loon A, Just A, Kaysser L, Bouza M, Holtackers R, Rothlisberger M, Li Z, Witholt B (2006) Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72:59–65

    Article  PubMed  Google Scholar 

  53. van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA (2005) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71:1737–1744

    Article  PubMed  Google Scholar 

  54. van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology (Reading, Engl) 147:1621–1630

    Google Scholar 

  55. van Beilen JB, Penninga D, Witholt B (1992) Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. J Biol Chem 267:9194–9201

    PubMed  Google Scholar 

  56. Walton AZ, Stewart JD (2004) Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20:403–411

    Article  PubMed  CAS  Google Scholar 

  57. Weber FJ, de Bont JA (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. J. B. van Beilen and Prof. Dr. B. Witholt for providing bacterial strains and plasmids. This project was co-financed by the Deutsche Bundesstiftung Umwelt (AZ 20006/855), the ERA-Net project PSYSMO, and the Ministry of Innovation, Science, Research and Technology of North Rhine-Westphalia, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornelissen, S., Liu, S., Deshmukh, A.T. et al. Cell physiology rather than enzyme kinetics can determine the efficiency of cytochrome P450-catalyzed C–H-oxyfunctionalization. J Ind Microbiol Biotechnol 38, 1359–1370 (2011). https://doi.org/10.1007/s10295-010-0919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0919-y

Keywords

Navigation