Skip to main content
Log in

Evaluation of molecular techniques for identification and enumeration of Raoultella terrigena ATCC 33257 in water purifier efficacy testing

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Raoultella terrigena ATCC 33257, a representative of the coliform group, is commonly used as a challenge organism in water purifier efficacy testing. In addition to being time consuming, traditional culturing techniques and metabolic identification systems (including automated systems) also fail to accurately differentiate this organism from its closely related neighbors belonging to the Enterobacteriaceae group. Molecular-based techniques, such as real-time quantitative polymerase chain reaction (qPCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting, are preferred methods of detection because of their accuracy, reproducibility, specificity, and sensitivity, along with shorter turnaround time. ERIC-PCR performed with the 1R primer set demonstrated stable unique banding patterns (~800, ~300 bp) for R. terrigena ATCC 33257 different from patterns observed for R. planticola and R. ornithinolytica. The primer pair developed from gyraseA (gyrA) sequence of R. terrigena for the SYBR Green qPCR assay using the AlleleID® 7.0 primer probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 101 colony forming units (CFU)/ml for whole cells and 4.7 fg with genomic DNA. The primer pair was successful in determining the concentration (5.5 ± 0.3 × 106 CFU/ml) of R. terrigena from water samples spiked with equal concentration of Escherichia coli and R. terrigena. Based on these results from the ERIC-PCR and the SYBR Green qPCR assay, these molecular techniques can be efficiently used for rapid identification and quantification of R. terrigena during water purifier testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul SF, Warren G, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Alves MS, da Silva Dias RC, Dias de Castra AC, Riley LW, Moreira BM (2006) Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. J Clin Microbiol 44:3640–3646. doi:10.1128/JCM.00940-06

    Article  PubMed  CAS  Google Scholar 

  3. American Public Health Association (1988) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington

    Google Scholar 

  4. Boye K, Hansen DS (2003) Sequencing of 16S rDNA of Klebsiella: taxonomic relations within the genus and to other Enterobacteriaceae. Int J Med Microbiol 292:495–503. doi:10.1078/1438-4221-00228

    Article  PubMed  CAS  Google Scholar 

  5. Brisse S, Verhoef J (2001) Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC sequencing and automated ribotyping. Int J Syst Evol Microbiol 51:915–924

    Article  PubMed  CAS  Google Scholar 

  6. Burlingame GA, McElhaney J, Bennett M, Pipes WO (1984) Bacterial interference with colony sheen production on membrane filters. Appl Environ Microbiol 47:56–60

    PubMed  CAS  Google Scholar 

  7. Donofrio RS, Bestervelt LL, Saha R, Bagley ST (2010) Quantitative real-time PCR and fluorescent in situ hybridization approaches for enumerating Brevundimonas diminuta in drinking water. J Ind Microbiol Biotechnol 37:909–918. doi:10.1007/s 10295-010-0738-1

  8. Drancourt M, Bollet C, Carta A, Rousselier P (2001) Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932

    Article  PubMed  CAS  Google Scholar 

  9. Fode-Vaughan KA, Maki JS, Benson JA, Collins MLP (2003) Direct PCR detection of Escherichia coli O157:H7. Lett Appl Microbiol 37:239–243. doi:10.1046/j.1472-765X.2003.01386.x

    Article  PubMed  CAS  Google Scholar 

  10. Granier SA, Leflon-Guibout V, Goldstein FW, Nicolas-Chanoine MH (2003) Enterobacterial repetitive intergenic consensus 1R PCR assay for the detection of Raoultella sp. isolates among strains identified as Klebsiella oxytoca in clinical laboratory. J Clin Microbiol 41:1740–1742. doi:10.1128/JCM.41.4.1740-1742.2003

    Article  PubMed  CAS  Google Scholar 

  11. Hansen D, Aucken MH, Podschun R (2004) Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J Clin Microbiol 42:3665–3669. doi:10.1128/JCM.42.8.3665-3669.2004

    Article  PubMed  CAS  Google Scholar 

  12. Hartman LJ, Selby EB, Whitehouse CA, Coyne SR, Jaissle JG, Twenhafel NA, Burke RL, Kulesh DA (2009) Rapid real-time PCR assays for detection of Klebsiella pneumoniae with the rmpA or magA genes associated with the hypermucoviscosity phenotype screening of nonhuman primates. J Mol Diagn 11: doi:10.2353/jmoldx.2009.080136

  13. Izard D, Ferragut C, Gavini F, Kersters K, De Ley J, Leclerc H (1981) Klebsiella terrigena, a new species from soil and water. Int J Syst Bacteriol 31:116–127

    Article  CAS  Google Scholar 

  14. Kanki M, Yoda T, Tsukamoto T, Shibata T (2002) Klebsiella pneumoniae produces no histamine: Raoultella planticola and Raoultella ornithinolytica strains are histamine producers. Appl Environ Microbiol 68:3462–3466. doi:10.1128/AEM.68.7.3462-3466.2002

    Article  PubMed  CAS  Google Scholar 

  15. Kovtunovych G, Lytvynenko T, Negrutska V, Lar O, Brisse S, Kozyrovska N (2003) Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase pheX gene. Res Microbiol 154:587–592

    Article  PubMed  CAS  Google Scholar 

  16. Kurupati P, Chow C, Kumarasinghe G, Poh CL (2004) Rapid detection of Klebsiella pneumoniae from blood culture bottles by real-time PCR. J Clin Microbiol 42:1337–1340. doi:10.1128/JCM.42.3.1337-1340.2004

    Article  PubMed  CAS  Google Scholar 

  17. Monnet D, Freney J (1994) Method for differentiating Klebsiella planticola and Klebsiella terrigena from other Klebsiella species. J Clin Microbiol 32:1121–1122

    PubMed  CAS  Google Scholar 

  18. Park JE, Ahn TS, Lee HJ, Lee YO (2006) Comparison of total and faecal coliforms as faecal indicator in eutrophicated surface water. Water Sci Technol 54:185–190

    PubMed  CAS  Google Scholar 

  19. Reece RJ, Maxwell A (1991) DNA gyrase: structure and function. Crit Rev Biochem Mol 26:335–375

    Article  CAS  Google Scholar 

  20. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, pp 365–386

    Google Scholar 

  21. Saha R, Donofrio RS, Bagley ST (2010) Development of a real-time TaqMan assay to detect mendocina sublineage Pseudomonas species in contaminated metalworking fluids. J Ind Microbiol Biotechnol 37:843–848. doi: 10.1007/s10295-010-0731-8

  22. Sidarenka AV, Novik GI, Akimov VN (2008) Application of molecular methods to classification and identification of bacteria of the genus Bifidobacterium. Microbiology 77:251–260. doi:10.1134/S0026261708030016

    Article  CAS  Google Scholar 

  23. Sun F, Wu D, Qiu Z, Jin M, Wang X, Li J (2010) Development of real-time PCR systems based on SYBR Green for the specific detection and quantification of Klebsiella pneumoniae in infant formula. Food Control 21:487–491. doi:10.1016/j.foodcont.2009.07.014

    Article  CAS  Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgin DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 24:4876–4882

    Article  Google Scholar 

  25. US Environmental Protection Agency 1988 Guide standard for the water purifiers

  26. Versalovic J, Koeuth J, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acid Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  27. Westbrook GL, O’Hara CM, Roman SB, Miller JM (2000) Incidence and identification of Klebsiella planticola in clinical isolates with emphasis on newborns. J Clin Microbiol 38:1495–1497

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to extend their sincere thank to NSF International for providing facilities and funding for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratul Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, R., Bechanko, R., Bestervelt, L.L. et al. Evaluation of molecular techniques for identification and enumeration of Raoultella terrigena ATCC 33257 in water purifier efficacy testing. J Ind Microbiol Biotechnol 38, 1337–1344 (2011). https://doi.org/10.1007/s10295-010-0917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0917-0

Keywords

Navigation