Skip to main content
Log in

Biotechnological process for obtaining new fermented products from cashew apple fruit by Saccharomyces cerevisiae strains

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In Brazil, the use of cashew apple (Anacardium occidentale L.) to obtain new products by biotechnological process represents an important alternative to avoid wastage of a large quantity of this fruit, which reaches about 85% of the annual production of 1 million tons. This work focuses on the development of an alcoholic product obtained by the fermentation of cashew apple juice. The inoculation with two different strains of yeast Saccharomyces cerevisiae viz. SCP and SCT, were standardized to a concentration of 10cells ml−1. Each inoculum was added to 1,500 ml of cashew must. Fermentation was performed at 28 ± 3°C and aliquots were withdrawn every 24 h to monitor soluble sugar concentrations, pH, and dry matter contents. The volatile compounds in fermented products were analyzed using the gas chromatography/mass spectrometry (GC/MS) system. After 6 days, the fermentation process was completed, cells removed by filtration and centrifugation, and the products were stabilized under refrigeration for a period of 20 days. The stabilized products were stored in glass bottles and pasteurized at 60 ± 5°C/30 min. Both fermented products contained ethanol concentration above 6% (v v−1) while methanol was not detected and total acidity was below 90 mEq l−1, representing a pH of 3.8–3.9. The volatile compounds were characterized by the presence of aldehyde (butyl aldehyde diethyl acetal, 2,4-dimethyl-hepta-2,4-dienal, and 2-methyl-2-pentenal) and ester (ethyl α-methylbutyrate) representing fruity aroma. The strain SCT was found to be better and efficient and this produced 10% more alcohol over that of strain SCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams RP (1995) Identification of essential oils by ion trap mass spectroscopy. Academic Press, San Diego, USA

    Google Scholar 

  2. Assis A van R, Bizzo HR, Matta VM, Cabral LMC (2007) Recovery of aroma compounds of cashew apple fruit (Anacardium occidentale L) by pervaporation. Ciência e Tecnologia de Alimentos Campinas 27(2):349–354. doi:10.1590/S0101-20612007000200024

    Article  Google Scholar 

  3. Amerine MA, Roessler EB (1983) Wines—their sensory evaluation. W.H. Freeman, New York

    Google Scholar 

  4. Berger RG (1995) Aroma biotechnology. Springer, Berlin Heidelberg, New York

    Google Scholar 

  5. Bogusz Junior S, Ketzer DCM, Gubert R, Andrades L, Gobo AB (2006) Composição química da cachaça produzida na região noroeste do Rio Grande do Sul, Brasil. Ciência e Tecnologia de Alimentos 26(4):793–798. doi:10.1590/S0101-20612006000400013

    Article  Google Scholar 

  6. Bonino M, Scchellino R, Rizzi C, Algotti R, Delfini C, Baiocchi C (2003) Aroma compounds of an Italian wine (Ruche) by HS–SPME analysis coupled with GC–ITMS. Food Chem 80:125–133. doi:10.1016/s0308-8146(02)003-40

    Article  CAS  Google Scholar 

  7. IBRAVIN—Instituto Brasileiro do Vinho (2010) Portaria n. 229 de 25 de outubro de 1998 do Ministério da Agricultura. Available from: http://www.ibravin.org.br/documentos.php?secao=53

  8. Delaquis P, Cliff M, King M, Girard B, Hall J, Reynolds A (2000) Effect of two commercial malolactic cultures on the chemical and sensory properties of chancellor wines vinified with different yeasts and fermentation temperatures. Am J Viticult 51(1):42–48

    CAS  Google Scholar 

  9. Dias ALM (2010) Processo Agroindustrial: Elaboração de Fermentado de Caju—EMBRAPA. Available from: www.cnpat.embrapa.br/cnpat/cd/jss/acervo/Ct_82.pdf

  10. Etiévant PX (1991) Wine. In: Maarse H (ed) Volatile compounds in food and beverage. Marcel Dekker Inc., New York

    Google Scholar 

  11. Franco MRB, Janzanti NS (2005) Aroma of minor tropical fruits. Flavour Fragr J 20(4):358–371. doi:10.1002/ffj.1515

    Article  CAS  Google Scholar 

  12. Garruti DS, Franco MRB, Da Silva MAAP, Jazantti NS, Alves GL (2003) Evaluation of volatile flavour compounds from cashew apple (Anacardium occidentale L.) juice by the Osme gas chromatography/olfactometry technique. J Sci Food Agric 83:1455–1462. doi:10.1002/fsfa.1560

    Article  CAS  Google Scholar 

  13. Garruti DS, Franco MRB, Da Silva MAAP, Jazantti NS, Alves GL (2006) Assessment of aroma impact compounds in a cashew apple-based alcoholic beverage by GC-MS and GC-olfactometry. Food Sci Technol 39(4):372–377. doi:10.1016/j.lwt.2005.02.006

    Google Scholar 

  14. Gil J, Mateo JJ, Jimenez M (1996) Aroma compounds in wine as influenced by apiculate yeasts. J Food Sci 61(6):1247–1249. doi:10.1111/j.1365-2621.1996.tb10971.x

    Article  CAS  Google Scholar 

  15. Hang YD, Lee CY, Woodams EE (1981) Production of alcohol from apple pomace. Appl Environ Microbiol 42(6):1128–1132

    PubMed  CAS  Google Scholar 

  16. Instituto Adolfo Lutz (2005) Métodos Físico-Químicos para Análise de Alimentos, 4th edn. São Paulo, Brazil

    Google Scholar 

  17. Jackson RS (1993) Wine science—principles and applications. Academic Press, San Diego

    Google Scholar 

  18. Lopez EF, Darrieto P, Gomez EF, Dubourdicu D (1995) Wine aromatic compounds by GC-MS-Sniffing. Alimentaria 264:81–84

    Google Scholar 

  19. Maciel MI, Hansen TJ, Aldinger SB, Labows JN (1986) Flavor chemistry of cashew apple juice. J Agric Food Chem 34(5):923–927. doi:10.1006/jjca.2000.0894

    Article  CAS  Google Scholar 

  20. Maia AB (1994) Componentes secundários da aguardente. STAB 12(6):29–34

    Google Scholar 

  21. Maia JGM, Andrade EHA, Zoghbib MGB (2000) Volatile constituents of the leaves, fruits and flowers of cashew (Anacardium occidentale L.). J Food Composit Anal 13(3):227–232. doi:10.1006/jfca.2000.0894

    Article  CAS  Google Scholar 

  22. Mamede MEO, Pastore GM (2006) Study of methods for the extraction of volatile compounds from fermented grape must. Food Chem 96(94):586–590. doi:10.1016/j.foodchem.2005.03.013

    Article  CAS  Google Scholar 

  23. Mateo JJ, Jimenez M, Huerta T, Pastor A (1992) Comparison of volatile produced by four Saccharomyces cerevisiae strains isolated from Monastrell musts. Am J Enol Vitie 43:206

    CAS  Google Scholar 

  24. Mateo JJ, Jimenez M (2000) Monoterpenes in grape juice and wines. J Chromatogr A 881:557–567. doi:10.1016/S0021-9673(99)01342-4

    Article  PubMed  CAS  Google Scholar 

  25. Mathesis G (1992) The biogenesis of the wine flavor. Dragogo Flavor Inform Serv Rep 37:72–89

    Google Scholar 

  26. Nikanen L (1983) Aroma of beer, wine and distilled alcoholic beverages. Akademic-Verlag, Berlin, p 405

    Google Scholar 

  27. Oliveira MEB, Oliveira GSF, Maia GA, Moreira RAE, Monteiro ACO (2002) Aminoácidos livres majoritários no suco de caju: variação ao longo da safra. Rev Bras Frutic 24(1):133–137. doi:10.1590/S0100-29452002000100029

    Article  Google Scholar 

  28. Pinal L, Cedeno M, Gutterrez H (1997) Influencing higher alcohol production in the tequila process. Biotechnol Lett 19(1):45–57

    Article  CAS  Google Scholar 

  29. Rapp A, Knipser W (1979) 3,7-Dimethyl-okta-1, 5-dien-3, 7-diol Eine neue terpenoide Verbindung des Trauben-und Wein aromas. Vitis 18:229–233

    CAS  Google Scholar 

  30. Rodriguez-Amaya AB (2004) In: Franco MRB (eds) Aroma e sabor de alimentos—Temas atuais. Varella, São Paulo, pp 177–194

  31. Shimazu Y, Watanabe M (1981) Quality of wine made from cAMP-added botrytized must. J Ferment Technol 59(1):27–32

    CAS  Google Scholar 

  32. Silva TG (1999) Diagnóstico vinícola do sul de Minas Gerais—I Caracterização físico-química dos vinhos. Ciência Agrotécnica 23(3):632–637

    CAS  Google Scholar 

  33. Silva FLH, Rodrigues MI, Maugeri F (1999) Dynamic modelling, simulation and optimization of an extractive continuous alcoholic fermentation process. J Chem Technol Biotechnol 74(2):176–182

    Article  Google Scholar 

  34. Torres Neto AB, Silva ME, Silva WB, Swarnakar R, Silva FLH (2006) Cinética e caracterização físico-química do fermentado do pseudofruto do caju (Anacardium occidentale L.). Quim Nova 29(3):489–492. doi:10.1590/S0100-40422006000300015

    Article  CAS  Google Scholar 

  35. Tromp A (1984) The effect of yeast strain, grape solids, nitrogen and temperature on fermentation rate and wine quality. S Afr J Enol Viticul 5(1):1–6

    CAS  Google Scholar 

  36. Tsukatani T, Miwa T, Furukawa M, Costanzo RC (2003) Detection thresholds for phenyl ethyl alcohol using serial dilutions in different solvents. Chem Senses 28:25–32. doi:10.1093/chemse/28.1.25

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support given by CNPq (National Council for the Development of Science and Technology, Brazil) and to CAPES for fellowship offered to the author, Suzane M. Araújo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Ferraz Silva.

Additional information

This article is based on a presentation at the 32nd Symposium on Biotechnology for Fuels and Chemicals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, S.M., Silva, C.F., Moreira, J.J.S. et al. Biotechnological process for obtaining new fermented products from cashew apple fruit by Saccharomyces cerevisiae strains. J Ind Microbiol Biotechnol 38, 1161–1169 (2011). https://doi.org/10.1007/s10295-010-0891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0891-6

Keywords

Navigation