Skip to main content
Log in

Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The present study enlightens the role of the antagonistic potential of nonpathogenic strain B21 against sulfate-reducing bacteria (SRB) consortium. The inhibitor effects of strain B21 were compared with those of the chemical biocide tetrakishydroxymethylphosphonium sulfate (THPS), generally used in the petroleum industry. The biological inhibitor exhibited much better and effective performance. Growth of SRB in coculture with bacteria strain B21 antagonist exhibited decline in SRB growth, reduction in production of sulfides, with consumption of sulfate. The observed effect seems more important in comparison with the effect caused by the tested biocide (THPS). Strain B21, a dominant facultative aerobic species, has salt growth requirement always above 5% (w/v) salts with optimal concentration of 10–15%. Phylogenetic analysis based on partial 16S rRNA gene sequences showed that strain B21 is a member of the genus Bacillus, being most closely related to Bacillus qingdaonensis DQ115802 (94.0% sequence similarity), Bacillus aidingensis DQ504377 (94.0%), and Bacillus salarius AY667494 (92.2%). Comparative analysis of partial 16S rRNA gene sequence data plus physiological, biochemical, and phenotypic features of the novel isolate and related species of Bacillus indicated that strain B21 may represent a novel species within the genus Bacillus, named Bacillus sp. (EMBL, FR671419). The results of this study indicate the application potential of Bacillus strain B21 as a biocontrol agent to fight corrosion in the oil industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al-Hashem AH, Carew J, Al-Borno A (2004) Screening test for six dual biocide regimes against planktonic and sessile populations of bacteria. Paper no. 04748. CORROSION 2004, NACE International, USA

  2. American Public Health Association (2005) Standard methods for the examination of water and wastewater, 21st edn. American Waterworks Association and Water Pollution Control Federation, Baltimore, MD

    Google Scholar 

  3. Angell P, White DC (1995) Is metabolic activity by biofilms with sulfate-reducing bacterial consortia essential for long-term propagation of pitting corrosion of stainless steel. J Ind Microbiol 15:329–332

    Article  CAS  Google Scholar 

  4. Arahal DR, Ventosa A (2002) Moderately halophilic and halotolerant species of Bacillus and related genera. In: Berkeley R, Heyndrickx M, Logan N, De Vos P (eds) Applications and systematics of Bacillus and relatives. Blackwell, Oxford, pp 83–99

    Chapter  Google Scholar 

  5. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidelman JG, Struhl KE (1988) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  6. Beech IR, Sunner J (2004) Biocorrosion, towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  CAS  PubMed  Google Scholar 

  7. Benko R (1988) Bacteria as possible organisms for biological control of blue stain. International research group on wood preservation. Doc. no IRG/WP/1339, pp 1–12

  8. Benyagoub M, Benhamou N, Carisse O (1998) Cytochemical investigation of the antagonistic interaction between a Microsphaeropsis sp. (isolate P130A) and Venturia inaequalis. Phytopathology 88:605–613

    Article  CAS  PubMed  Google Scholar 

  9. Berger F, Li H, White D, Frazer R, Leifert C (1996) Effect of pathogen inoculum, antagonist density, and plant species on biological control of Phytophthora and Pythium damping-off by Bacillus subtilis Cot1 in high-humidity fogging glasshouse. Phytopathology 86:428–433

    Article  Google Scholar 

  10. Bermond-Tilly D, Janvier M, Braisaz T, Dupont-Moral I (2003) Microbially influenced corrosion: studies on bacteria isolated from seawater environment. Eurocorr, Budapest, Hungary, p 198

    Google Scholar 

  11. Bernheimer AW, Avigad LS (1970) Nature and properties of a cytological agent produced by Bacillus subtilis. J Gen Microbiol 61:361–369

    CAS  PubMed  Google Scholar 

  12. Block SS (1991) Preservatives for industrial products. In: Block SS (ed) Disinfection, sterilization, and preservation. Lea and Farbiger, Philadelphia, PA, pp 608–655

    Google Scholar 

  13. Bouchotroch S, Quesada E, del Moral A, Llamas I, Bejar V (2001) Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632

    CAS  PubMed  Google Scholar 

  14. Buchanan RG, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 269–272

    Google Scholar 

  15. Campaignolle X, Caumette P, Dabosi F, Crolet JL (1996) The role of thiosulfate on the microbially induced pitting of carbon steel, In: Proceedings of corrosion/96, paper no. 2, NACE international, Houston, TX, pp 1–14

  16. Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9

    CAS  PubMed  Google Scholar 

  17. Chaudhary A, Gupta LK, Gupta JK, Banerjee UC (1997) Studies on slime-forming organisms of a paper mill—slime production and its control. J Ind Microbiol Biotechnol 18:348–352

    Article  CAS  Google Scholar 

  18. Cooling FB, Maloney CL, Negel E, Tabinowski J, Odom JM (1996) Inhibition of sulfate respiration by 1, 8-dihydroxyanthraquinone and other anthraquinone derivatives. Appl Environ Microbiol 62:2999–3004

    CAS  PubMed  Google Scholar 

  19. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  20. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  21. Crolet JL, Magot M (1996) Non-SRB sulfidogenic bacteria in oilfield production facilities. Congrès CORROSION/95, Orlando, Florida, ETATS-UNIS, vol 35, no 3, pp 60–64

  22. Dihn HT, Kuever J, Mubmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  Google Scholar 

  23. Dong XZ, Cai MY (2001) Manual of the identification of general bacteria. Scientific, Beijing

    Google Scholar 

  24. Downward BL, Talbot RE, Haack TK (1997) Tetrakishydroxymethylphosphonium sulfate (THPS), a new industrial biocide with low environmental toxicity, paper no. 401. In: Corrosion/97. NACE International, Houston, TX

  25. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately. Clin Microbiol Rev 15:155–166

    Article  CAS  PubMed  Google Scholar 

  26. Dunsmore BC, Whitfield TB, Lawson PA, Collins MD (2004) Corrosion by sulfatereducing bacteria that utilize nitrate. Paper no. 04763. CORROSION 2004, NACE International, USA

  27. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485

    CAS  PubMed  Google Scholar 

  28. Dzierzewicz Z, Cwalina B, Gawlik B, Wilczok T, Gonciarz Z (1997) Isolation and evaluation of susceptibility to sulfasalazine of Desulfovibrio desulfuricans strains from the human digestive tract. Acta Microbiol Pol 46:175–187

    CAS  PubMed  Google Scholar 

  29. Fauque G, Ollivier B (2003) Anaerobes: the sulfate-reducing as an example of the metabolic diversity. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, USA, pp 169–176

    Google Scholar 

  30. Fera P (1985) Etude expérimentale de la colonisation par les bactéries de surfaces immergées en milieu marin. Sciences biologiques fondamentales et appliquées, psychologie. UBO, Brest, p 212. A

  31. Fontana MG (1986) Corrosion engineering, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  32. Franklin MJ, Nivens DE, Vass AA, Mittelman MW, Jack RF, Dowling NJE, White DC (1991) Effect of chlorine and chlorine/bromine biocide treatments on the number and activity of biofilm bacteria and on carbon steel corrosion. Corrosion 47(2):128–134

    CAS  Google Scholar 

  33. Freitas JR, Germida JJ (1991) Pseudomonas cepacea and Pseudomonas putida as winter wheat inoculants for biocontrol of Rhizoctonia solani. Can J Microbiol 37:780–784

    Article  Google Scholar 

  34. Frey R (1998) Award-winning biocides are lean, mean and green. Today’s Chem Work 7(34–35):37–38

    Google Scholar 

  35. Fusetani N (2004) Biofouling and antifouling. Nat Prod Rep 21:94–104

    Article  CAS  PubMed  Google Scholar 

  36. Gardner LR, Stewart PS (2002) Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:354–360

    Article  CAS  PubMed  Google Scholar 

  37. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes. In: Bergey’s manual of systematic bacteriology, 2nd edn, Release 5.0. New York, Springer. http://141.150.157.80/bergeysoutline/main.htm

  38. Hamilton WA (1985) Sulfate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39:195–217

    Article  CAS  PubMed  Google Scholar 

  39. Hubert C, Nemati M, Jenneman G, Voordouw G (2005) Corrosion risk associated with microbial souring control using nitrate or nitrite. Appl Microbiol Biotechnol 68:272–282

    Article  CAS  PubMed  Google Scholar 

  40. Hubert C, Nemati M, Jenneman GE, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Prog 19:338–345

    Article  CAS  PubMed  Google Scholar 

  41. Hurley MA, Roscoe ME (1983) Automated statistical analysis of microbial enumeration by dilution series. J Appl Microbiol 55:159–164. doi:10.1111/j.1365-2672.1983.tb02660.x

    Article  Google Scholar 

  42. Jayaraman A, Cheng ET, Earthman JC, Wood TK (1997) Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion. Appl Microbiol Biotechnol 48:11–17

    Article  CAS  PubMed  Google Scholar 

  43. Jayaraman A, Hallock PJ, Carson RM, Lee C-C, Mansfeld FB, Wood TK (1999) Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl Microbiol Biotechnol 52:267–275

    Article  CAS  PubMed  Google Scholar 

  44. Kebbouche-Gana S, Gana ML, Khemili S, Fazouane-Naimi F, Bouanane NA, Penninckx M, Hacene H (2009) Isolation and characterization of halophilic Archaea able to produce biosurfactants. J Ind Microbiol Biotechnol 36:727–738

    Article  CAS  PubMed  Google Scholar 

  45. Kosaric N, Cairns WL, Gray Neil CC (1987) Surfactant science series, vol 25. Marcel Dekker, New York, pp 1–21

    Google Scholar 

  46. Larsen J (2002) Downhole nitrate applications to control sulfate-reducing bacteria activity and reservoir souring, paper 02025. In: Corrosion/2002. NACE International, Houston, TX

  47. Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A (1995) Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumillus CL45. J Appl Bacteriol 78:97–108

    CAS  PubMed  Google Scholar 

  48. Lim JM, Jeon CO, Lee SM, Lee JC, Xu LH, Jiang CL, Kim CJ (2006) Bacillus salarius sp. nov., a halophilic, spore forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 56:373–377

    Article  CAS  PubMed  Google Scholar 

  49. Little B, Lee J, Ray R (2007) New development in mitigation of microbiologically influenced corrosion MIC—an international perspective symposium. Extrin Corrosion Consultants, Curtin University, Perth, Australia, 14–15 Feb 2007

  50. Mancinelli RL, Hochstein LI (1986) The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 35:55–58

    Article  CAS  PubMed  Google Scholar 

  51. Melo IS (1998) Agentes microbianos de controle de fungos fitopatogênicos. In: Azevedo JL, Melo IS (eds) Controle biológico, vol 1. Embrapa, Jaguariúna, pp 17–30

    Google Scholar 

  52. Nemati M, Jenneman GE, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434

    Article  CAS  PubMed  Google Scholar 

  53. Nemati M, Mazutinec T, Jenneman GE, Voordouw G (2001) Control of biogenic H2S production by nitrite and molybdate. J Ind Microbiol Biotechnol 26:350–355

    Article  CAS  PubMed  Google Scholar 

  54. Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761

    Article  CAS  Google Scholar 

  55. Ollivier B, Caumette P, Garcia JL, Mah RA (1994) Anaerobic bacteria from hypersaline environments. Microbiol Rev 58:27–38

    CAS  PubMed  Google Scholar 

  56. Oren A, Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsufoxide and trimethylamine N-oxide. FEMS Microbiol Lett 70:33–36

    Article  CAS  Google Scholar 

  57. Oren A, Ventosa A, Grant WD (1997) Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47:233–238

    Article  Google Scholar 

  58. Paulus W (1993) Microbicides for the protection of materials—a handbook. Chapman & Hall, London, UK

    Google Scholar 

  59. Pfeffer W (1900) The physiology of plants. A treatise upon the metabolism and sources of energy in plants. 2nd edn. Oxford, 1: 512–514

  60. Pirttijärvi TSM, Graeffe TH, Salkinoja–Salonen MS (1996) Bacterial contaminants in liquid packaging boards: assessment of potential for food spoilage. J Appl Bacteriol 81:445–458

    PubMed  Google Scholar 

  61. Podile A, Prakash A (1996) Lysis and biological control of Aspergillus niger by Bacillus subtilis AF1. Can J Microbiol 42:533–538

    Article  CAS  PubMed  Google Scholar 

  62. Postgate JR (1984) The sulfate-reducing bacteria. Cambridge University Press, New York

    Google Scholar 

  63. Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G (1999) Role of microorganisms in corrosion inhibition of metals in aquatic habitats. Appl Microbiol Biotechnol 52:639–646

    Article  CAS  Google Scholar 

  64. Rodin VB, Jigletsova SK, Kobelev VS, Akimova NA, Aleksandrova NV, Rasulova GE, Kholodenko VP (2000) Development of biological methods for controlling the aerobic microorganism–induced corrosion of carbon steel. Appl Biochem Microbiol 36(6):589–593

    Article  Google Scholar 

  65. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  66. Schmitt HG (1987) Action of antimicrobial substances. Parfumerie and Kosmetik 68:5–16 A71

    CAS  Google Scholar 

  67. Seghal SN, Gibbons NE (1960) Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6:165–169

    Article  Google Scholar 

  68. Silva AA, Morrell JJ (1998) Inhibition of wood-staining Ophiostoma picea by Bacillus subtilis on Pinus ponderosa sapwood. Marerial und Organismen 32:241–252

    Google Scholar 

  69. Smirnov VV, Kiprianova EA (1990) Bakterii roda Pseudomonas, (Bacteria of the Genus Pseudomonas). Naukova Dumka, Kiev

    Google Scholar 

  70. Stackebrandt E, Liesack W (1993) Nucleic acids and classification. In: Goodfellow M, O’Donnell AG (eds) Handbook of new bacterial systematics. Academic, London, pp 152–189

    Google Scholar 

  71. Väisänen OM, Nurmiaho-Lassila EL, Marmo SA, Salkinoja–Salonen MS (1994) Structure and composition of biological slimes on paper and board machines. Appl Environ Microbiol 60:641–653

    PubMed  Google Scholar 

  72. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    CAS  PubMed  Google Scholar 

  73. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8:169–180

    CAS  PubMed  Google Scholar 

  74. Waksman SA (1937) Associative and antagonistic effects of microorganisms: I. Historical review of antagonistic relationships. Soil Sci 43:51–68

    Article  CAS  Google Scholar 

  75. Wang Q, Li W, Liu Y, Cao H, Li Z, Guo G (2007) Bacillus qingdaonensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a crude sea-salt sample collected near Qingdao in eastern China. Int J Syst Evol Microbiol 57:1143–1147

    Article  CAS  PubMed  Google Scholar 

  76. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  77. Xue Y, Ventosa A, Wang X, Ren P, Zhou P, Ma Y (2008) Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. Int J Syst Evol Microbiol 58:2828–2832

    Article  CAS  PubMed  Google Scholar 

  78. Zhu XY, Modi H, Kilbane II JJ (2006) Efficacy and risks of nitrate application for the mitigation of SRB-induced corrosion paper no. 06524. CORROSION 2006, NACE International, USA

  79. Zuber P, Nakano M, Marahiel M (1993) Peptide antibiotics. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus Subtilis and other gram-positive bacteria. American Society for Microbiology, Washington DC, USA, pp 897–916

    Google Scholar 

  80. Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76:1245–1253

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salima Kebbouche-Gana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gana, M.L., Kebbouche-Gana, S., Touzi, A. et al. Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry. J Ind Microbiol Biotechnol 38, 391–404 (2011). https://doi.org/10.1007/s10295-010-0887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0887-2

Keywords

Navigation