Skip to main content
Log in

A low-cost procedure for production of fresh autochthonous wine yeast

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A low-cost procedure was designed for easy and rapid response-on-demand production of fresh wine yeast for local wine-making. The pilot plant produced fresh yeast culture concentrate with good microbial quality and excellent oenological properties from four selected wine yeasts. The best production yields were obtained using 2% sugar beet molasses and a working culture volume of less than 60% of the fermenter capacity. The yeast yield using 2% sugar grape juice was low and had poor cell viability after freeze storage, although the resulting yeast would be directly available for use in the winery. The performance of these yeasts in commercial wineries was excellent; they dominated must fermentation and improved its kinetics, as well as improving the physicochemical parameters and the organoleptic quality of red and white wines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

OD 600:

Optical density at 600 nm

T15:

Time needed to ferment 15% of the total sugars present in the must

T100:

Time needed to ferment 100% of the total sugars

cyh:

Cycloheximide

smr:

Sulfometuron

rhod:

Rhodamine 6G

CFU:

Colony-forming units

References

  1. Ambrona J, Maqueda M, Zamora E, Ramírez M (2005) Sulfometuron resistance as genetic marker for yeast populations in wine fermentations. J Agric Food Chem 53:7438–7443

    Article  CAS  PubMed  Google Scholar 

  2. Ambrona J, Vinagre A, Maqueda M, Álvarez ML, Ramírez M (2006) Rhodamine-pink as genetic marker for yeast populations in wine fermentations. J Agric Food Chem 54:2977–2984

    Article  CAS  PubMed  Google Scholar 

  3. Baleiras Couto M, Eijsma B, Hofstra H, Veld JH, Vossen JM (1996) Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Appl Environ Microbiol 62:41–46

    CAS  PubMed  Google Scholar 

  4. Barrette J, Champagne CP, Goulet J (1999) Development of bacterial contamination during production of yeast extracts. Appl Environ Microbiol 65:3261–3263

    CAS  PubMed  Google Scholar 

  5. Benítez CT, Codon AC, Gasent-Ramirez JM (1994) Recent development in yeast strains for baking. In: Alberghina L (ed) Progress in biotechnology. Elsevier, Amsterdam, pp 613–622

  6. Beudeker RF, Van Dam HW, Van der Plaat JB, Vellega K (1990) Developments in bakers’ yeast production. In: Verachtert H, De Mot R (eds) Yeast biotechnology and biocatalysis. Marcel Dekker Inc, New York, pp 103–146

    Google Scholar 

  7. Burrows S (1970) Baker’s yeast. In: Rose AH, Harrison JS (eds) The yeasts: yeast technology, vol 3. Academic Press, London, pp 349–420

    Google Scholar 

  8. Chen SL, Chiger M (1985) Production of bakers’ yeast. In: Moo-Young M (ed) Comprehensive biotechnology, vol 3. Pergamon Press, Oxford, pp 429–462

    Google Scholar 

  9. Cocolin L, Manzano M, Rebecca S, Comi G (2002) Monitoring of yeast population changes during a continuous wine fermentation by molecular methods. Am J Enol Vitic 53:24–27

    Google Scholar 

  10. De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    PubMed  Google Scholar 

  11. Degre R (1993) Selection and commercial cultivation of wine yeast and bacteria. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 421–447

    Google Scholar 

  12. EC Nº 761 (1999) Amending Regulation EEC Nº 2676/90 determining community methods for the analysis of wines. Off J Eur Community L99:5–9

  13. EEC Nº 2676 (1990) Métodos de análisis comunitarios aplicables al sector del vino. Official Report of the European Community, p 191

  14. Enfors SO, Hedenberg J, Olsson K (1990) Simulation of the dynamics in the bakers’ yeast process. Bioprocess Eng 5:191–198

    Article  CAS  Google Scholar 

  15. Ferrari MD, Bianco R, Froche C, Loperena ML (2001) Baker’s yeast production from molasses/cheese whey mixtures. Biotechnol Lett 23:1–4

    Article  CAS  Google Scholar 

  16. Fleet GH, Heard GM (1993) Yeast growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Bern, pp 27–54

    Google Scholar 

  17. Giudici P, Zambonelli C (1992) Criteri di selezione dei lieviti per enologia. Vignevini 9:29–34

    Google Scholar 

  18. Howell KS, Bartowsky EJ, Fleet GH, Henschke PA (2004) Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation. Lett Appl Microbiol 38:315–320

    Article  CAS  PubMed  Google Scholar 

  19. Irvin R (1954) Commercial yeast manufacture. In: Underkofler LA, Hickey RJ (eds) Industrial fermentations. Chemical Publishing Company, New York, pp 273–306

    Google Scholar 

  20. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  21. Kristiansen B (1994) Integrated design of fermentation plant. The production of bakers’ yeast. VCH Verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  22. Lee J, Lee SY, Park S, Middelberg APJ (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    Article  CAS  PubMed  Google Scholar 

  23. Lo Curto RB, Tripodo MM (2001) Yeast production from virgin grape marc. Bioresour Technol 78:5–9

    Article  CAS  PubMed  Google Scholar 

  24. López V, Querol A, Ramón D, Fernández-Espinar MT (2001) A simplified procedure to analyse mitochondrial DNA from industrial yeasts. Int J Food Microbiol 68:75–81

    Article  PubMed  Google Scholar 

  25. Marinangeli P, Angelozzi D, Ciani M, Clementi F, Mannazzu I (2003) Minisatellites in Saccharomyces cerevisiae genes encoding cell wall proteins: a new way towards wine strain characterization. FEMS Yeast Res 4:427–435

    Article  Google Scholar 

  26. Melero R (1992) Fermentación controlada y seleccion de levaduras vinicas. Rev Esp Cienc Tecnol Aliment 32:371–379

    CAS  Google Scholar 

  27. Morrison RL (1962) The determination of acetaldehyde in high-proof fortifying spirits, beverage brandy, and wine. Am J Enol Vitic 13:159–168

    CAS  Google Scholar 

  28. Nadal D, Colomer B, Piña B (1996) Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl Environ Microbiol 62:1944–1950

    CAS  PubMed  Google Scholar 

  29. Naumova ES, Bulat SA, Mironenko NV, Naumov GI (2001) Differentiation of six sibling species in the Saccharomyces sensu stricto complex by multilocus enzyme electrophoresis and UP-PCR analysis. Antonie van Leeuwenhoek J Microbiol 83:155–166

    Article  Google Scholar 

  30. Oura E, Suomalainen H (1983) Qualitative requirements and utilization of nutrients: yeasts. CRC Press, Cleveland

    Google Scholar 

  31. Pérez F, Regodón JA, Valdés ME, De Miguel C, Ramírez M (2000) Cycloheximide resistance as marker for monitoring yeasts in wine fermentations. Food Microbiol 17:119–128

    Article  Google Scholar 

  32. Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. J Gen Microbiol 129:43–49

    CAS  Google Scholar 

  33. Plesset J, Ludwig J, Cox B, McLaughlin C (1987) Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J Bacteriol 169:779–784

    CAS  PubMed  Google Scholar 

  34. Querol A, Barrio E, Huerta T, Ramón D (1992) Dry yeast strain for use in fermentation of Alicante wine: selection and DNA patterns. J Food Sci 57:183–185

    Article  CAS  Google Scholar 

  35. Querol A, Barrio E, Huerta T, Ramón D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953

    CAS  PubMed  Google Scholar 

  36. Quesada MP, Cenis JL (1995) Use of random amplified polymorphic DNA (RAPD-PCR) in the characterization of wine yeasts. Am J Enol Vitic 46:204–208

    CAS  Google Scholar 

  37. Ramírez M, Pérez F, Regodón JA (1998) A simple and reliable method for hybridization of homothallic wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 64:5039–5041

    PubMed  Google Scholar 

  38. Ramírez M, Regodón JA, Pérez F, Rebollo JE (1999) Wine yeast fermentation vigor may be improved by elimination of recessive growth-retarding alleles. Biotechnol Bioeng 65:212–218

    Article  PubMed  Google Scholar 

  39. Redón M, Guillamón JM, Mas A, Rozè N (2008) Effect of active dry wine yeast storage upon viability and lipid composition. World J Microbiol Biotechnol 24:2555–2563

    Article  Google Scholar 

  40. Reed G, Nagodawithana TW (1988) Technology of yeast usage in winemaking. Am J Enol Vitic 39:83–90

    CAS  Google Scholar 

  41. Reed G, Nagodawithana TW (1991) Baker’s yeast production. In: Reed G, Nagodawithana TW (eds) Yeast Technology. Van Nostrand Reinhold, New York, pp 261–369

    Google Scholar 

  42. Reed G, Nagodawithana TW (1991) Yeast technology. Van Nostrand Reinhold, New York

    Google Scholar 

  43. Regodón JA, Pérez F, Valdés ME, De Miguel C, Ramírez M (1997) A simple and effective procedure for selection of wine yeast strains. Food Microbiol 14:247–254

    Article  Google Scholar 

  44. Ribereau-Gayon J, Peynaud E, Sudraud P, Ribereau-Gayon P (1982) Sciences et techniques du vin. Analysis et controle des vins, Dundo

    Google Scholar 

  45. Ribéreau-Gayon P (1985) New developments in wine microbiology. Am J Enol Vitic 36:1–10

    Google Scholar 

  46. Schenberg-Frascino A, Moustacchi E (1972) Lethal and mutagenic effects of elevated temperature on haploid yeast. Mol Gen Genet 115:243–257

    Article  CAS  PubMed  Google Scholar 

  47. Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231:19–26

    Article  CAS  PubMed  Google Scholar 

  48. Sherman F (1991) Getting started with yeast. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular biology, vol 194. Academic Press, New York, pp 3–21

    Chapter  Google Scholar 

  49. Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115

    PubMed  Google Scholar 

  50. Ward OP (1989) Fermentation biotechnology. Principles, processes and products. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

This work was funded by grants 2PR01B002 and 2PR04B003 from the Extremadura Government, Spain. Matilde Maqueda was the recipient of a grant from the Spanish Ministerio de Educación y Ciencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ramírez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maqueda, M., Pérez-Nevado, F., Regodón, J.A. et al. A low-cost procedure for production of fresh autochthonous wine yeast. J Ind Microbiol Biotechnol 38, 459–469 (2011). https://doi.org/10.1007/s10295-010-0790-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0790-x

Keywords

Navigation