Skip to main content
Log in

Enzyme replacement therapy for Morquio A: an active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency. Currently no effective therapies exist for MPS IVA. In this work, production of a recombinant GALNS enzyme (rGALNS) in Escherichia coli BL21 strain was studied. At shake scale, the effect of glucose concentration on microorganism growth, and microorganism culture and induction times on rGALNS production were evaluated. At bench scale, the effect of aeration and agitation on microorganism growth, and culture and induction times were evaluated. The highest enzyme activity levels at shake scale were observed in 12 h culture after 2–4 h induction. At bench scale the highest enzyme activity levels were observed after 2 h induction. rGALNS amounts in inclusion bodies fraction were up to 17-fold higher than those observed in the soluble fraction. However, the highest levels of active enzyme were found in the soluble fraction. Western blot analysis showed the presence of a 50-kDa band, in both soluble and inclusion bodies fractions. These results show for the first time the feasibility and potential of production of active rGALNS in a prokaryotic system for development of enzyme replacement therapy for MPS IVA disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1999) Short protocols in molecular biology. Wiley, Hoboken

    Google Scholar 

  2. Baker K, Rendall M, Hills A, Hoare M, Freedman R, James D (2001) Metabolic control of recombinant protein N-Glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73:188–202

    Article  CAS  PubMed  Google Scholar 

  3. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  PubMed  Google Scholar 

  4. Bernardes GJ, Castagner B, Seeberger PH (2009) Combined approaches to the synthesis and study of glycoproteins. ACS Chem Biol 4:703–713

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharya SK, Dubey AK (1997) Effects of dissolved oxygen and oxygen mass transfer on overexpression of target gene in recombinant E. coli. Enzyme Microb Technol 20:355–360

    Article  CAS  Google Scholar 

  6. Bielicki J, Fuller M, Guo X, Morri C, Hopwood J, Anson D (1995) Expression, purification and characterization of recombinant human N-acetylgalactosamine-6-sulphatase. Biochem J 311:333–339

    CAS  PubMed  Google Scholar 

  7. Braulke T, Bonifacino JS (2009) Sorting of lysosomal proteins. Biochim Biophys Acta 1793:605–614

    Article  CAS  PubMed  Google Scholar 

  8. Çalik P, Yilgör P, Ayhan P, Demir AS (2004) Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem Eng Sci 59:5075–5083

    Article  Google Scholar 

  9. Chu L, Robinson D (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    Article  CAS  PubMed  Google Scholar 

  10. Córdoba-Ruiz HA, Poutou-Piñales RA, Echeverri-Peña OY, Algecira-Enciso NA, Landázuri P, Sáenz H, Barrera-Avellaneda LA (2009) Laboratory scale production of the human recombinant iduronate 2-sulfate sulfatase-like from Pichia pastoris. Afr J Biotechnol 8:1786–1792

    Google Scholar 

  11. Cosma M, Pepe P, Annunziata I, Newbold R, Grompe M, Parenti G, Ballabio A (2003) The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113:445–456

    Article  CAS  PubMed  Google Scholar 

  12. Cromwell ME, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8:E572–E579

    Article  CAS  PubMed  Google Scholar 

  13. Diaz-Ricci J, Hernandez M (2000) Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 20:79–108

    Article  CAS  PubMed  Google Scholar 

  14. Dittmer F, Ulbrich EJ, Hafner A, Schmahl W, Meister T, Pohlmann R, von Figura K (1999) Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J Cell Sci 112:1591–1597

    CAS  PubMed  Google Scholar 

  15. Durany O, de Mas C, López-Santín J (2005) Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochem 40:707–716

    Article  CAS  Google Scholar 

  16. Dvorak-Ewell M, Wendt D, Shroff S, Koppaka V, Christianson T, Vellard M (2009) Functional evaluation of recombinant human N-acetylgalactosamine-6-sulfate sulfatase as enzyme replacement therapy. Mol Genet Metab 96:S22

    Google Scholar 

  17. Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbiol systems. Biotechnol J 1:164–186

    Article  CAS  PubMed  Google Scholar 

  18. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250

    Article  CAS  PubMed  Google Scholar 

  19. Grubb JH, Vogler C, Levy B, Galvin N, Tan Y, Sly WS (2008) Chemically modified b-glucuronidase crosses blood–brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc Natl Acad Sci U S A 105:2616–2621

    Article  CAS  PubMed  Google Scholar 

  20. Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1:462–468

    CAS  PubMed  Google Scholar 

  21. Landázuri P, Gunturiz M, Gómez L, Poutou-Piñales RA, Torres A, Echeverri-Peña OY, Sáenz H, Delgado J, Barrera-Avellaneda LA (2003) Expresión transiente de la Iduronato 2 sulfato sulfatasa humana recombinante funcionalmente activa en Escherichia coli. Rev Asoc Col Ciencias Biol 15:33–42

    Google Scholar 

  22. Landázuri P, Poutou-Piñales RA, Acero-Godoy J, Córdoba-Ruiz H, Echeverri-Peña OY, Sáenz H, Delgado J, Barrera-Avellaneda LA (2009) Cloning and shake flask expression of hrIDS-like in Pichia pastoris. Afr J Biotechnol 8:2871–2877

    Google Scholar 

  23. Landgrebe J, Dierks T, Schamidt B, von Figura K (2003) The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. Gene 316:47–56

    Article  CAS  PubMed  Google Scholar 

  24. Li R-Y, Cheng C-Y (2009) Investigation of inclusion body formation in recombinant Escherichia coli with a bioimaging system. J Biosci Bioeng 107:512–515

    Article  CAS  PubMed  Google Scholar 

  25. Lin-Chao S, Bremer H (1986) Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol Gen Genet 203:143–149

    Article  CAS  PubMed  Google Scholar 

  26. Luli G, Strohl W (1990) Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011

    CAS  PubMed  Google Scholar 

  27. Meuwly F, Ruffieux P, Kadouri A, von Stockar U (2007) Packed-bed bioreactors for mammalian cell culture: bioprocess and biomedical applications. Biotechnol Adv 25:45–56

    Article  CAS  PubMed  Google Scholar 

  28. Montaño AM, Sukegawa K, Kato Z, Carrozzo R, Di Natale P, Christensen E, Orii KO, Orii T, Kondo N, Tomatsu S (2007) Effect of ‘attenuated’ mutations in mucopolysaccharidosis IVA on molecular phenotypes of N-acetylgalactosamine-6-sulfate sulfatase. J Inherit Metab Dis 30:758–767

    Article  PubMed  Google Scholar 

  29. Montaño AM, Tomatsu S, Gottesman G, Smith M, Orii T (2007) International Morquio A registry: clinical manifestation and natural course of Morquio A disease. J Inherit Metab Dis 30:165–174

    Article  PubMed  Google Scholar 

  30. Neufeld E, Muenzer J (2001) The mucopolysaccharidosis. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited diseases. McGraw-Hill, New York, pp 3421–3452

    Google Scholar 

  31. Patra AK, Mukhopadhyay R, Mukhija R, Krishnan A, Garg LC, Panda AK (2000) Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Exp Purif 18:182–192

    Article  CAS  Google Scholar 

  32. Phue J-N, Lee SJ, Trinh L, Shiloach J (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5a). Biotechnol Bioeng 101:831–836

    Article  CAS  PubMed  Google Scholar 

  33. Phue J-N, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: differencs in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and northern blot analyses. Biotechnol Bioeng 90:805–820

    Article  CAS  PubMed  Google Scholar 

  34. Phue J-N, Shiloach J (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109:21–30

    Article  CAS  PubMed  Google Scholar 

  35. Pohl S, Marschner K, Storch S, Braulke T (2009) Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases. Biol Chem 390:521–527

    Article  CAS  PubMed  Google Scholar 

  36. Poutou-Piñales RA, Vanegas A, Landázuri P, Sáenz H, Lareo L, Echeverri O, Barrera LA (2010) Human sulfatase transiently and functionally active expressed in E. coli K12. Electron J Biotechnol 13. doi:10.2225/vol13-issue3-fulltext-8

  37. Puertas JM, Betton JM (2009) Engineering an efficient secretion of leech carboxypeptidase inhibitor in Escherichia coli. Microb Cell Fact 8:57

    Article  PubMed  Google Scholar 

  38. Rohrbach M, Clarke J (2007) Treatment of lysosomal storage disorders: progress with enzyme replacement therapy. Drugs 67:2697–2716

    Article  CAS  PubMed  Google Scholar 

  39. Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307:249–264

    Article  CAS  PubMed  Google Scholar 

  40. Sardiello M, Annunziata I, Roma G, Ballabio A (2005) Sulfatases and sulfatase modifying factors: an exclusive and promiscuous relationship. Hum Mol Genet 14:3203–3217

    Article  CAS  PubMed  Google Scholar 

  41. Shene C, Andrews B, Asenjo J (2003) Study of recombinant micro-organism populations characterized by their plasmid content per cell using a segregated model. Bioprocess Biosyst 25:333–340

    Article  CAS  Google Scholar 

  42. Shiloach J, Kaufman J, Guillard A, Fass R (1996) Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (lambdaDE3) and Escherichia coli JM 109. Biotechnol Bioeng 49:421–428

    Article  CAS  PubMed  Google Scholar 

  43. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99:303–310

    Article  CAS  PubMed  Google Scholar 

  44. Swartz J (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12:195–201

    Article  CAS  PubMed  Google Scholar 

  45. Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    Article  CAS  PubMed  Google Scholar 

  46. Thomas JG, Baneyx F (1996) Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. J Biol Chem 271:11141–11147

    Article  CAS  PubMed  Google Scholar 

  47. Togna A, Shuler M, Wilson D (1993) Effects of plasmid copy number and runaway plasmid replication on overproduction and excretion of beta-lactamase from Escherichia coli. Biotechnol Prog 9:31–39

    Article  CAS  PubMed  Google Scholar 

  48. Tomatsu S, Fukuda M, Masue K, Sukegawa T, Fukao A, Yamagishi T, Hori H, Iwati T, Ogawa Y (1991) Morquio disease: isolation, characterization and expression of full-length cDNA for human N-acetylgalactosamine-6-sulfate sulfatase. Biochem Biophys Res Commun 181:677–683

    Article  CAS  PubMed  Google Scholar 

  49. Tomatsu S, Gutierrez M, Nishioka T, Yamada M, Tosaka Y, Grubb J, Montano A, Vieira M, Trandafirescu G, Pena O, Yamaguchi S, Orii K, Orii T, Noguchi A, Laybauer L (2005) Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase. Hum Mol Genet 14:3321–3335

    Article  CAS  PubMed  Google Scholar 

  50. Tomatsu S, Montaño A, Gutiérrez M, Grubb J, Oikawa H, Dung V, Ohashi A, Nishioka T, Yamada M, Tosaka Y, Trandafirescu G, Orii T (2007) Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase. Mol Genet Metab 91:69–78

    Article  CAS  PubMed  Google Scholar 

  51. Tomatsu S, Montaño A, Nishioka T, Gutierrez M, Peña O, Trandafirescu G, Lopez P, Yamaguchi S, Noguchi A, Orri T (2005) Mutation and polymorphism spectrum of the GALNS gene in mucopolysaccharidosis IVA (Morquio A). Hum Mutat 26:500–512

    Article  CAS  PubMed  Google Scholar 

  52. Tomatsu S, Montaño A, Ohashi A, Oikawa H, Oguma T, Dung V, Nishioka T, Orii T, Sly W (2007) Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum Mol Genet 17:815–824

    Article  PubMed  Google Scholar 

  53. van de Walle M, Shiloach J (1998) Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng 57:71–78

    Article  PubMed  Google Scholar 

  54. van Diggelen O, Zhao H, Kleijer W, Janse H, Poorthuis B, van Pelt J, Kamerling J, Galjaard H (1990) A fluorometric enzyme assay for the diagnosis of Morquio type A. Clin Chem Acta 187:131–140

    Article  Google Scholar 

  55. Vellodi A, Young EP, Cooper A, Wraith JE, Winchester B, Meaney C, Ramaswami U, Will A (1997) Bone marrow transplantation for mucopolysaccharidosis type I: experience of two British centres. Arch Dis Child 76:92–99

    Article  CAS  PubMed  Google Scholar 

  56. Villaverde A, Carrió M (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395

    Article  CAS  PubMed  Google Scholar 

  57. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    Article  CAS  PubMed  Google Scholar 

  58. Wang Z, Xiang L, Shao J, Węgrzyn A, Węgrzyn G (2006) Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact 5:34. doi:10.1186/1475-2859-1185-1134

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shunji Tomatsu and Dr. Adriana Montaño (Saint Louis University) for pCXN-GALNS plasmid, recombinant human GALNS enzyme, and anti-GALNS monoclonal antibody. We also thank Dr. Patricia Landazuri (Universidad del Quindio) for pGEX-3X expression plasmid, Dr. Raul Poutou (Pontificia Universidad Javeriana) for critical revision of the manuscript, and Carlos Soto for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oscar F. Sánchez or Carlos J. Alméciga-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, A., Espejo, Á.J., Hernández, A. et al. Enzyme replacement therapy for Morquio A: an active recombinant N-acetylgalactosamine-6-sulfate sulfatase produced in Escherichia coli BL21. J Ind Microbiol Biotechnol 37, 1193–1201 (2010). https://doi.org/10.1007/s10295-010-0766-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0766-x

Keywords

Navigation