Journal of Industrial Microbiology & Biotechnology

, Volume 37, Issue 9, pp 961–971 | Cite as

High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies

  • Gavin C. Barnard
  • Angela R. Kull
  • Nathan S. Sharkey
  • Seemab S. Shaikh
  • Alissa M. Rittenhour
  • Irina Burnina
  • Youwei Jiang
  • Fang Li
  • Heather Lynaugh
  • Teresa Mitchell
  • Juergen H. Nett
  • Adam Nylen
  • Thomas I. Potgieter
  • Bianka Prinz
  • Sandra E. Rios
  • Dongxing Zha
  • Natarajan Sethuraman
  • Terrance A. Stadheim
  • Piotr Bobrowicz
Original Paper

Abstract

The methylotrophic yeast Pichia pastoris has recently been engineered to express therapeutic glycoproteins with uniform human N-glycans at high titers. In contrast to the current art where producing therapeutic proteins in mammalian cell lines yields a final product with heterogeneous N-glycans, proteins expressed in glycoengineered P. pastoris can be designed to carry a specific, preselected glycoform. However, significant variability exists in fermentation performance between genotypically similar clones with respect to cell fitness, secreted protein titer, and glycan homogeneity. Here, we describe a novel, multidimensional screening process that combines high and medium throughput tools to identify cell lines producing monoclonal antibodies (mAbs). These cell lines must satisfy multiple selection criteria (high titer, uniform N-glycans and cell robustness) and be compatible with our large-scale production platform process. Using this selection process, we were able to isolate a mAb-expressing strain yielding a titer (after protein A purification) in excess of 1 g/l in 0.5-l bioreactors.

Keywords

Antibody Yeast Screening Pichia pastoris Fermentation 

References

  1. 1.
    Maggon K (2007) Monoclonal antibody “gold rush”. Curr Med Chem 14:1978–1987CrossRefPubMedGoogle Scholar
  2. 2.
    Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685CrossRefPubMedGoogle Scholar
  3. 3.
    Sommerfeld S, Strube J (2005) Challenges in biotechnology production – generic processes and process optimization for monoclonal antibodies. Chem Eng Process 44:1123–1137CrossRefGoogle Scholar
  4. 4.
    Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123CrossRefPubMedGoogle Scholar
  5. 5.
    Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414CrossRefPubMedGoogle Scholar
  6. 6.
    Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1:164–186CrossRefPubMedGoogle Scholar
  7. 7.
    Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422CrossRefPubMedGoogle Scholar
  8. 8.
    Cereghino GP, Cregg JM (1999) Applications of yeast in biotechnology: protein production and genetic analysis. Curr Opin Biotechnol 10:422–427CrossRefPubMedGoogle Scholar
  9. 9.
    Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332CrossRefPubMedGoogle Scholar
  10. 10.
    Gellissen G, Hollenberg CP (1997) Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis – a review. Gene 190:87–97CrossRefPubMedGoogle Scholar
  11. 11.
    Kingsman AJ, Stanway C, Kingsman SM (1987) The expression of homologous and heterologous genes in yeast. Antonie Van Leeuwenhoek 53:325–333CrossRefPubMedGoogle Scholar
  12. 12.
    Swinkels BW, van Ooyen AJ, Bonekamp FJ (1993) The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie Van Leeuwenhoek 64:187–201CrossRefPubMedGoogle Scholar
  13. 13.
    Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66CrossRefPubMedGoogle Scholar
  14. 14.
    Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30(Pt 3):193–200PubMedGoogle Scholar
  15. 15.
    Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH, Hamilton SR, Stadheim TA, Miele RG, Bobrowicz B, Mitchell T, Rausch S, Renfer E, Wildt S (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14:757–766CrossRefPubMedGoogle Scholar
  16. 16.
    Choi BK, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, Miele RG, Nett JH, Wildt S, Gerngross TU (2003) Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci U S A 100:5022–5027CrossRefPubMedGoogle Scholar
  17. 17.
    Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H, Mitchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S, Gerngross TU (2003) Production of complex human glycoproteins in yeast. Science 301:1244–1246CrossRefPubMedGoogle Scholar
  18. 18.
    Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim TA, Li H, Choi BK, Hopkins D, Wischnewski W, Roser J, Mitchell T, Strawbridge RR, Hoopes J, Wildt S, Gerngross TU (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313:1441–1443CrossRefPubMedGoogle Scholar
  19. 19.
    Li H, Sethuraman N, Stadheim TA, Zha D, Prinz P, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24:210–215CrossRefPubMedGoogle Scholar
  20. 20.
    Gasser B, Maurer M, Gach J, Kunert R, Mattanovich D (2006) Engineering of Pichia pastoris for improved production of antibody fragments. Biotechnol Bioeng 94:353–361CrossRefPubMedGoogle Scholar
  21. 21.
    Holz C, Hesse O, Bolotina N, Stahl U, Lang C (2002) A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr Purif 25:372–378CrossRefPubMedGoogle Scholar
  22. 22.
    Boettner M, Prinz B, Holz C, Stahl U, Lang C (2002) High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. J Biotechnol 99:51–62CrossRefPubMedGoogle Scholar
  23. 23.
    Bottner M, Lang C (2004) High-throughput expression in microplate format in Pichia pastoris. Methods Mol Biol 267:277–286PubMedGoogle Scholar
  24. 24.
    Weis R, Luiten R, Skranc W, Schwab H, Wubbolts M, Glieder A (2004) Reliable high-throughput screening with Pichia pastoris by limiting yeast cell death phenomena. FEMS Yeast Res 5:179–189CrossRefPubMedGoogle Scholar
  25. 25.
    Frachon E, Bondet V, Munier-Lehmann H, Bellalou J (2006) Multiple microfermentor battery: a versatile tool for use with automated parallel cultures of microorganisms producing recombinant proteins and for optimization of cultivation protocols. Appl Environ Microbiol 72:5225–5231CrossRefPubMedGoogle Scholar
  26. 26.
    Betts JI, Doig SD, Baganz F (2006) Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor. Biotechnol Prog 22:681–688CrossRefPubMedGoogle Scholar
  27. 27.
    Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–523CrossRefPubMedGoogle Scholar
  28. 28.
    Weuster-Botz D, Puskeiler R, Kusterer A, Kaufmann K, John GT, Arnold M (2005) Methods and milliliter scale devices for high-throughput bioprocess design. Bioprocess Biosyst Eng 28:109–119CrossRefPubMedGoogle Scholar
  29. 29.
    Isett K, George H, Herber W, Amanullah A (2007) 24 well plate miniature bioreactor high-throughput system: assessment for microbial cultivations. Biotechnol Bioeng 98(5):1017–1028CrossRefPubMedGoogle Scholar
  30. 30.
    Aboka FO, Yang H, de Jonge LP, Kerste R, van Winden WA, van Gulik WM, Hoogendijk R, Oudshoorn A, Heijnen JJ (2006) Characterization of an experimental miniature bioreactor for cellular perturbation studies. Biotechnol Bioeng 95:1032–1042CrossRefPubMedGoogle Scholar
  31. 31.
    Szita N, Boccazzi P, Zhang Z, Boyle P, Sinskey AJ, Jensen KF (2005) Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5:819–826CrossRefPubMedGoogle Scholar
  32. 32.
    Potgieter TI, Cukan M, Houston-Cummings NR, Drummond JE, Jiang Y, Li F, Lynaugh H, Mallem M, McKelvey T, Mitchell T, Nylen A, Rittenhour A, Stadheim TA, Zha D, d’Anjou M (2009) Production of monoclonal antibodies by glycoengineered Pichia pastoris. J Biotechnol 139(4):318–325CrossRefPubMedGoogle Scholar
  33. 33.
    Charlton HR, Relton JM, Slater NK (1999) Characterization of a generic monoclonal antibody harvesting system for adsorption of DNA by depth filters and various membranes. Bioseparation 8:281–291CrossRefPubMedGoogle Scholar
  34. 34.
    Clare JJ, Rayment FB, Ballantine SP, Sreekrishna K, Romanos MA (1991) High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Biotechnology (NY) 9:455–460CrossRefGoogle Scholar
  35. 35.
    Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (NY) 12:181–184CrossRefGoogle Scholar
  36. 36.
    Sunga AJ, Tolstorukov I, Cregg J (2008) Posttranslational vector amplification in the yeast Pichia pastoris. FEMS Yeast Res 8:870–876CrossRefPubMedGoogle Scholar
  37. 37.
    Koy JF, Pleninger P, Wall L, Pramanik A, Martinez M, Moore CW (1995) Genetic changes and bioassays in bleomycin- and phleomycin-treated cells, and their relationship to chromosomal breaks. Mutat Res 336:19–27PubMedGoogle Scholar
  38. 38.
    Moore CW (1989) Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin. Cancer Res 49:6935–6940PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • Gavin C. Barnard
    • 1
  • Angela R. Kull
    • 2
  • Nathan S. Sharkey
    • 2
  • Seemab S. Shaikh
    • 2
  • Alissa M. Rittenhour
    • 2
  • Irina Burnina
    • 2
  • Youwei Jiang
    • 2
  • Fang Li
    • 2
  • Heather Lynaugh
    • 2
  • Teresa Mitchell
    • 2
  • Juergen H. Nett
    • 2
  • Adam Nylen
    • 2
  • Thomas I. Potgieter
    • 2
  • Bianka Prinz
    • 2
  • Sandra E. Rios
    • 2
  • Dongxing Zha
    • 2
  • Natarajan Sethuraman
    • 2
  • Terrance A. Stadheim
    • 2
  • Piotr Bobrowicz
    • 1
  1. 1.Adimab Inc.LebanonUSA
  2. 2.GlycoFi Inc. (wholly owned subsidiary of Merck & Co, Inc.)LebanonUSA

Personalised recommendations