Skip to main content
Log in

Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria

  • Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A population shift of ammonia-oxidizing bacteria (AOB) was described within a bench-scale activated sludge process treating an industrial wastewater in a previous report (Kuo et al. in Environ Eng Sci 23:507–520, 2006). In this investigation, transcriptional levels (amoA mRNA-based) of the three AOB groups (i.e., RI-27, B2-3, and Nitrosomonas nitrosa) identified in the treatment process were determined by quantitative real-time reverse transcription (RT-PCR) assays to circuitously evaluate AOB ammonia-oxidizing activity and to assess the presumed correlation between cellular activity and the dominant (greatest number) AOB population. Results demonstrated that the AOB group with higher amoA mRNA levels dominated the overall AOB population in the wastewater treatment process. Although AOB population dominance did not correlate well with transcripts at a normalized cellular level (amoA mRNA/DNA ratio), overall amoA mRNA levels did reflect the activity of distinct AOB groups under different N-loading conditions. Thus, an additional molecular parameter (amoA mRNA) was successfully utilized to assess timely shifts in AOB population structure that may impact nitrification treatment performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aoi Y, Shiramasa Y, Tsuneda S, Hirata A, Kitayama A, Nagamune T (2002) Real-time monitoring of ammonia-oxidizing activity in a nitrifying biofilm by amoA mRNA analysis. Water Sci Tech 46(1–2):439–442

    CAS  Google Scholar 

  2. Aoi Y, Masaki Y, Tsuneda S, Hirata A (2004) Quantitative analysis of amoA mRNA expression as a new biomarker of ammonia oxidation activities in a complex microbial community. Lett Appl Microbiol 39:477–482

    Article  CAS  PubMed  Google Scholar 

  3. Aoi Y, Shiramasa Y, Masaki Y, Tsuneda S, Hirata A, Kitayama A, Nagamune T (2004) Expression of amoA mRNA in wastewater treatment processes examined by competitive RT-PCR. J Biotech 111:111–120

    Article  CAS  Google Scholar 

  4. Avrahami S, Liesack W, Conrad R (2003) Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ Microbiol 5:691–705

    Article  CAS  PubMed  Google Scholar 

  5. Bollmann A, Laanbroek HJ (2001) Continuous culture enrichments of ammonia-oxidizing bacteria at low ammonium concentrations. FEMS Microbiol Ecol 37:211–221

    Article  CAS  Google Scholar 

  6. Bollmann A, Schmidt I, Saunders AM, Nicolaisen MH (2005) Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Appl Environ Microbiol 71:1276–1282

    Article  CAS  PubMed  Google Scholar 

  7. Daims H, Ramsing NB, Schleifer K-H, Wagner M (2001) Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Appl Environ Microbiol 67:5810–5818

    Article  CAS  PubMed  Google Scholar 

  8. Dionisi HM, Layton AC, Harms G, Gregory IR, Robinson KG, Sayler GS (2002) Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl Environ Microbiol 68:245–253

    Article  CAS  PubMed  Google Scholar 

  9. Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67:1351–1362

    Article  CAS  PubMed  Google Scholar 

  10. Hallin S, Lydmark P, Kokalj S, Hermansson M, Sörensson F, Jarvis Å, Lindgren PE (2005) Community survey of ammonia-oxidizing bacteria in full-scale activated sludge processes with different solids retention time. J Appl Microbiol 99:629–640

    Article  CAS  PubMed  Google Scholar 

  11. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351

    Article  CAS  PubMed  Google Scholar 

  12. Hirooka K, Asano R, Nakai Y (2009) Change in the community structure of ammonia-oxidizing bacteria in activated sludge during selective incubation for MPN determination. J Ind Microbiol Biotechnol 36:679–685

    Article  CAS  PubMed  Google Scholar 

  13. Koops H-P, Pommerening-Röser A (2001) Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol Ecol 37:1–9

    Article  CAS  Google Scholar 

  14. Kuo DH-W, Robinson KG, Layton AC, Meyers AJ, Sayler GS (2006) Real-time PCR quantification of ammonia-oxidizing bacteria (AOB): solids retention time (SRT) impacts during activated sludge treatment of industrial wastewater. Environ Eng Sci 23:507–520

    Article  CAS  Google Scholar 

  15. Kuo DH-W (2006) Population (amoA-based) and activity (amoA-mRNA-based) assessment of ammonia oxidizing bacteria (AOB) during activated sludge wastewater treatment. PhD Dissertation. University of Tennessee, Knoxville

  16. Layton AC, Dionisi H, Kuo H-W, Robinson KG, Garrett VM, Meyers A, Sayler GS (2005) Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl Environ Microbiol 71:1105–1108

    Article  CAS  PubMed  Google Scholar 

  17. Lim J, Lee S, Hwang S (2008) Use of quantitative real-time PCR to monitor population dynamics of ammonia-oxidizing bacteria in batch process. J Ind Microbiol Biotechnol 35:1339–1344

    Article  CAS  PubMed  Google Scholar 

  18. Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    Article  CAS  PubMed  Google Scholar 

  19. Park H-D, Noguera DR (2007) Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentration. J Appl Microbiol 102:1401–1417

    Article  CAS  PubMed  Google Scholar 

  20. Pollice A, Tandoi V, Lestingi C (2002) Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res 36:2541–2546

    Article  CAS  PubMed  Google Scholar 

  21. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66:5368–5382

    Article  CAS  PubMed  Google Scholar 

  22. Radniecki TS, Semprini L, Dolan ME (2009) Expression of merA, amoA and hao in continuously cultured Nitrosomonas europaea cells exposed to zinc chloride additions. Biotechnol Bioeng 102(2):546–553

    Article  CAS  PubMed  Google Scholar 

  23. Robinson KG, Dionisi HM, Harms G, Layton AC, Gregory IR, Sayler GS (2003) Molecular assessment of ammonia- and nitrite-oxidizing bacteria in full-scale activated sludge wastewater treatment plants. Water Sci Technol 48(8):119–126

    CAS  PubMed  Google Scholar 

  24. Suwa Y, Imamura Y, Suzuki T, Tashiro T, Urushigawa Y (1994) Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Res 28:1523–1532

    Article  CAS  Google Scholar 

  25. Suwa Y, Sumino T, Noto K (1997) Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J Gen Appl Microbiol 43:373–379

    Article  CAS  PubMed  Google Scholar 

  26. Thomas R, Washington JW, Samarkina L (2005) Aerobic denitrification: implications for nitrogen fate modeling. US EPA. Environmental Information Management System (EIMS) Metadata Report. Presented at Mississippi RiverBasin Nutrients Science Workshop. St. Louis, MO, October 04–06, 2005

  27. Wagner M, Rath G, Amann R, Koops H-P, Schleifer K-H (1995) In situ identification of ammonia-oxidizing bacteria. Syst Appl Microbiol 18:251–264

    CAS  Google Scholar 

  28. Wei X, Yan T, Hommes NG, Liu X, Wu L, McAlvin C, Klots MG, Sayavedra-Soto LA, Zhou J, Arp DJ (2006) Transcript profiles of Nitrosomonas europaea during growth and upon deprivation of ammonia and carbonate. FEMS Microbiol Lett 257:76–83

    Article  CAS  PubMed  Google Scholar 

  29. Yuan Z, Blackall LL (2002) Sludge population optimization: a new dimension for the control of biological wastewater treatment systems. Water Res 36:482–490

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Waste Management and Research and Education Institute of the University of Tennessee (Knoxville).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin G. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, D.HW., Robinson, K.G., Layton, A.C. et al. Transcription levels (amoA mRNA-based) and population dominance (amoA gene-based) of ammonia-oxidizing bacteria. J Ind Microbiol Biotechnol 37, 751–757 (2010). https://doi.org/10.1007/s10295-010-0728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0728-3

Keywords

Navigation