Skip to main content
Log in

A comparative study of an intensive malolactic transformation of cider using Lactobacillus brevis and Oenococcus oeni in a membrane bioreactor

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The aim of this study was to investigate the secondary fermentation of alcoholic green cider by Lactobacillus brevis and Oenococcus oeni in a membrane bioreactor so as to compare the performance of the two organisms to rapidly carry out the malolactic fermentation (MLF), an important step in reducing acidity and enhancing the flavor characteristics of the beverages. First, the growth of both organisms was intensified by using perfusion culture in a membrane bioreactor (MBR). O. oeni and L. brevis were grown up to 12.8 g dry cell weight (DCW) l−1 and 15.5 g DCW l−1 in the MBR. Secondly, the resultant cells were then used for the malolactic transformation of green cider in the MBR. The influences of the residence time in the MBR and the ethanol concentration of the green cider on the organic acid transformation were investigated. Both organisms showed a good tolerance against the acidic conditions (pH 3.0–4.0) and ethanol (90 g l−1). Good levels of malate removal in the MBR were achieved by both organisms but O. oeni was more tolerant to high ethanol concentrations and was capable of growth and malate removal in 130 g ethanol l−1 green cider. L. brevis malate removal was significantly inhibited above 110 g ethanol l−1. The MBR allowed the development of high concentrations of active cells capable of rapid MLF and could be achieved over a prolonged period and over a wide range of conditions thus allowing the control of malate transformation rate. Organism selection for the transformation will be governed by the desired beverage characteristics. There is considerable scope to optimize the process further both with the choice of organisms and the design and operation of the reactor. Rapid beverage maturation on a commercial scale may be possible using MBR and pure cultures of MLF lactic acid bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bibal B, Vayssier Y, Goma G, Pareilleux A (1991) High-concentration cultivation of Lactococcus cremoris in a cell-recycle reactor. Biotechnol Bioeng 37:746–754

    Article  CAS  PubMed  Google Scholar 

  2. Bourdineaud J-P, Nehmé B, Tesse S, Lonvaud-Funel A (2003) The ftsH gene of the wine bacterium Oenococcus oeni is involved in protection against environmental stress. Appl Environ Microbiol 69(5):2512–2520

    Article  CAS  PubMed  Google Scholar 

  3. Cogan TM (1987) Co-metabolism of citrate and glucose by Leuconostoc spp. effect on growth, substrates and products. J Appl Bacteriol 63:551–558

    CAS  Google Scholar 

  4. Crespo JPSG, Xavier AMRB, Barreto MTO, Gonçalves LMD, Almeida JS, Carrondo MJT (1992) Tangential flow filtration for continuous cell recycle culture of acidogenic bacteria. Chem Eng Sci 47:205–214

    Article  CAS  Google Scholar 

  5. Drews A, Kraume M (2005) Process improvement by application of membrane bioreactors. Chem Eng Res Des 83:276–284

    Google Scholar 

  6. Elferink SJWHO, Krooneman J, Gottschal JC, Spoelstra SF, Faber F, Driehuis F (2001) Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol 67(1):125–132

    Article  CAS  Google Scholar 

  7. Fortier L-C, Maréchal RT, Diviés C, Lee BH, Guzzo J (2003) Induction of Oenococcus oeni H+-ATPase activity and mRNA transcription under acidic conditions. FEMS Microbiol Lett 222:165–169

    Article  CAS  PubMed  Google Scholar 

  8. Gao C, Fleet GH (1994) The degradation of malic acid by high cell density suspensions of Lueconostoc oenos. J Appl Bacteriol 76:632–637

    CAS  Google Scholar 

  9. Gao C, Fleet GH (1995) Cell cycle membrane bioreactor for conducting malolactic fermentation. Aust J Grape Wine Res 1:32–38

    Google Scholar 

  10. Guerrini S, Bastianini A, Granchi L, Vincenzini M (2002) Effect of oleic acid on Oenococcus oeni strains and malolactic fermentation in wine. Curr Microbiol 44:5–9

    Article  CAS  PubMed  Google Scholar 

  11. Herrero M, García LA, Díaz M (2003) Malolactic conversion using a Oenococcus oeni strain for cider production; effect of yeast extract supplementation. J Ind Microbiol Biotechnol 30:699–704

    Article  CAS  PubMed  Google Scholar 

  12. Holownia AT (2008) Wastewater treatment in a microbial membrane bioreactor—a model of the process. Desalination 221:552–558

    Article  Google Scholar 

  13. Kamoshita Y, Ohashi T, Suzuki T (1998) Improvement of filtration performance of stirred ceramic membrane reactor and its application to rapid fermentation of lactic acid by dense cell culture of Lactococcus lactis. J Ferment Bioeng 85(4):422–427

    Article  CAS  Google Scholar 

  14. Kulozik U, Wilde J (1999) Rapid lactic acid production at high cell concentrations in whey ultrafiltrate by Lactobacillus helveticus. Enz Microbial Technol 24:297–302

    Article  CAS  Google Scholar 

  15. Laera G, Pollice A, Saturno D, Giordano C, Sandulli R (2009) Influence of sludge retention time on biomass characteristics and cleaning requirements in a membrane bioreactor for municipal wastewater treatment. Desalination 236:104–110

    Article  CAS  Google Scholar 

  16. Liu S-Q (2002) A review. Malolactic fermentation in wine—beyond deacidification. J Appl Microbiol 92:589–601

    Google Scholar 

  17. Liu S-Q, Asmundson RV, Holland R, Crow VL (1997) Acetaldehyde metabolism by Leuconostoc mesenteroides subsp. cremoris under stress conditions. Int Dairy J 7:175–183

  18. Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek 76:317–331

    Article  CAS  PubMed  Google Scholar 

  19. Maicas S (2001) The use of alternative technologies to develop malolactic fermentation wine. Appl Microbiol Technol 56:35–39

    Article  CAS  Google Scholar 

  20. Maicas S, Natividad A, Ferrer S, Pardo I (2000) Maloactic fermentation of wine with high densities of non proliferating cells Oenococcus oeni. World J Microbiol Biotechnol 16:805–810

    Article  CAS  Google Scholar 

  21. Maréchal RT, Gaboriau D, Beney L, Diviés C (2000) Membrane fluidity of stress cells of Oenococcus oeni. Int Food Microbiol 55:269–273

    Article  Google Scholar 

  22. Mårtensson O, Chasco M-D, Irastorza A, Öste R, Holst O (2003) Comparison of growth characteristics and exoploysaccharide formation of two lactic acid bacteria strains, Pedicoccu damnosus 2.6 and Lactobacillu brevis G-77, in an oat-based, nondairy medium. Lebensm Wiss Technol 36:353–357

  23. Martinez G, Barker HA, Horecker BL (1963) A specific mannitol dehydrogenase from Lactobacillus brevis. JBC 238:1598–1603

    CAS  Google Scholar 

  24. Nedovic VA, Durieux A, Van Nedervelde L, Rosseels P, Vandegans J, Plaissant A-M, Simon J-P (2000) Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells. Enz Microbial Technol 26:834–839

    Article  CAS  Google Scholar 

  25. Ng ANL, Kim AS (2007) A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination 212:261–281

    Article  CAS  Google Scholar 

  26. Nielsen JC, Richelieu M (1999) Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni. Appl Environ Microbiol 65:740–745

    CAS  PubMed  Google Scholar 

  27. Osborne JP, Mira De Orduña R, Pilone GJ, Liu S-Q (2000) Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiol Lett 191:51–55

    Article  CAS  PubMed  Google Scholar 

  28. Pal P, Sikder J, Roy S, Giorno L (2009) Process intensification in lactic acid production: a review of membrane based processes. Chem Eng Process 48:1549–1559

    CAS  Google Scholar 

  29. Peterson WH, Fred EB (1920) Fermentation of fructose by Lactobacillus pentoaceticus, n. sp. JBC XLI:431–450

    Google Scholar 

  30. Pollice A, Laera G, Saturno D, Giordano C (2008) Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage. J Mem Sci 317:65–70

    Article  CAS  Google Scholar 

  31. Ramos A, Poolman B, Santos H, Lolkema JS, Konings WN (1994) Uniport of Anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostioc oenos. J Bacteriol 176:4899–4905

    CAS  PubMed  Google Scholar 

  32. Rodriguez SB, Amberg E, Thornton RJ, McLellan MR (1990) Malolactic fermentation in Chardonnay: growth and sensory effects of commercial strains of Leuconostoc oenos. J Appl Bacteriol 68:139–144

    CAS  Google Scholar 

  33. Sakamoto K, Margolles A, Van Veen HW, Konings WN (2001) Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J Bacteriol 183:5371–5375

    Article  CAS  PubMed  Google Scholar 

  34. Sakamoto K, Van Veen HW, Saito H, Kobayashi H, Konings WN (2002) Membrane-bound ATPase contributes to hop-resistance of Lactobacillus brevis. Appl Environ Microbiol 68:5374–5378

    Article  CAS  PubMed  Google Scholar 

  35. Savijoki K, Kahala M, Palva A (1997) High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals. Gene 186:255–262

    Article  CAS  PubMed  Google Scholar 

  36. Soomro AH, Masud T, Anwaar K (2002) Role of lactic acid bacteria (LAB) in food preservation and human health—a review. Pak J Nutr 1:20–24

    Article  Google Scholar 

  37. Suzuki T (1996) A dense cell culture system for microorganisms using a stirred ceramic membrane reactor incorporating asymmetric porous ceramic filters. J Ferment Bioeng 82:264–271

    Article  CAS  Google Scholar 

  38. Suzuki T, Sato T, Kominami M (1994) A dense cell retention culture system using a stirred ceramic membrane reactor. Biotechnol Bioeng 44:1186–1192

    Article  CAS  PubMed  Google Scholar 

  39. Texeira H, Gonçalves MG, Rozés N, Ramos A, San Romão MV (2002) Lactobacillic acid accumulation in the plasma membrane of Oenococcus oeni: a response to ethanol stress. Microb Ecol 43:146–153

    Article  Google Scholar 

  40. Tracey RP, Britz TJ (1989) Cellular fatty acid composition of Leuconostoc oenos. J Appl Bacteriol 66:445–456

    CAS  Google Scholar 

  41. Tracey RP, Britz TJ (1989) The effect of amino acids on malolactic fermentation by Leuconostoc oenos. J Appl Bacteriol 67:589–595

    CAS  Google Scholar 

  42. Van De Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antionie van Leeuwenhoek 82:187–216

    Article  Google Scholar 

  43. Yasui T, Yoda K, Kamiya T (1995) Analysis of S-layer proteins of Lactobacillus brevis. FEMS Microbiol Let 133:181–186

    Article  CAS  Google Scholar 

  44. Zhang D, Lovitt RW (2006) Performance assessment of malolactic fermenting bacteria Oenococcus oeni and Lactobacillus brevis in continuous culture. Appl Microbiol Biotechnol 69:658–664

    Article  CAS  PubMed  Google Scholar 

  45. Zhang D, Lovitt RW (2006) Review; strategies for enhanced malolactic fermentation in wine and cider maturation. J Chem Technol Biotechnol 81:1130–1140

    Article  CAS  Google Scholar 

  46. Zhao Z, Chen L (2009) Dynamic analysis of lactic acid fermentation in membrane bioreactor. J Theor Biol 257:270–278

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, I.S., Lovitt, R.W. A comparative study of an intensive malolactic transformation of cider using Lactobacillus brevis and Oenococcus oeni in a membrane bioreactor. J Ind Microbiol Biotechnol 37, 727–740 (2010). https://doi.org/10.1007/s10295-010-0716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0716-7

Keywords

Navigation