Skip to main content
Log in

Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae

  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

1,3-Propanediol (1,3-PD) can be used for the industrial synthesis of a variety of compounds, including polyesters, polyethers, and polyurethanes. 1,3-PD is generated from petrochemical and microbial sources. 1,3-Propanediol is a typical product of glycerol fermentation, while acetate, lactate, 2,3-butanediol, and ethanol also accumulate during the process. Substrate and product inhibition limit the final concentration of 1,3-propanediol in the fermentation broth. It is impossible to increase the yield of 1,3-propanediol by using the traditional whole-cell fermentation process. In this study, dhaD and dhaK, the genes for glycerol dehydrogenase and dihydroxyacetone kinase, respectively, were inactivated by homologous recombination in Klebsiella pneumoniae. The dhaD/dhaK double mutant (designated TC100), selected from 5,000 single or double cross homologous recombination mutants, was confirmed as a double cross by using polymerase chain reaction. Analysis of the cell-free supernatant with high-performance liquid chromatography revealed elimination of lactate and 2,3-butanediol, as well as ethanol accumulation in TC100, compared with the wild-type strain. Furthermore, 1,3-propanediol productivity was increased in the TC100 strain expressing glycerol dehydratase and 1,3-PDO dehydrogenase regulated by the arabinose PBAD promoter. The genetic engineering and medium formulation approaches used here should aid in the separation of 1,3-propanediol from lactate, 2,3-butanediol, and ethanol and lead to increased production of 1,3-propanediol in Klebsiella pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abbad-Andaloussi S, Manginot-Durr C, Amine J, Petitdemange E, Petitdemange H (1995) Isolation and characterization of clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413–4417

    CAS  PubMed  Google Scholar 

  2. Ahrens K, Menzel K, Zeng A, Deckwer W (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59:544–552

    Article  CAS  PubMed  Google Scholar 

  3. Barbirato F, Grivet JP, Soucaille P, Bories A (1996) 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol 62:1448–1451

    CAS  PubMed  Google Scholar 

  4. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  PubMed  Google Scholar 

  5. Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50:24–29

    Article  CAS  PubMed  Google Scholar 

  6. Chen HW, Fang BS, Hu ZD (2005) Optimization of process parameters for key enzymes accumulation of 1,3-propanediol production from Klebsiella pneumoniae. Biochem Eng J 25:47–53

    Article  CAS  Google Scholar 

  7. Daniel R, Stuertz K, Gottschalk G (1995) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177:4392–4401

    CAS  PubMed  Google Scholar 

  8. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    PubMed  Google Scholar 

  9. Fenghuan W, Huijin Q, He H, Tan T (2005) High-level expression of the 1,3-propanediol oxidoreductase from Klebsiella pneumoniae in Escherichia coli. Mol Biotechnol 31:211–219

    Article  PubMed  Google Scholar 

  10. Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419

    CAS  PubMed  Google Scholar 

  11. Forage RG, Lin EC (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599

    CAS  PubMed  Google Scholar 

  12. Forsberg CW (1987) Production of 1,3-propanediol from glycerol by clostridium acetobutylicum and other clostridium species. Appl Environ Microbiol 53:639–643

    CAS  PubMed  Google Scholar 

  13. Johnson EA, Lin EC (1987) Klebsiella pneumoniae 1,3-propanediol:NAD + oxidoreductase. J Bacteriol 169:2050–2054

    CAS  PubMed  Google Scholar 

  14. Knietsch A, Bowien S, Whited G, Gottschalk G, Daniel R (2003) Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol 69:3048–3060

    Article  CAS  PubMed  Google Scholar 

  15. Lai HC, Soo PC, Wei JR, Yi WC, Liaw SJ, Horng YT, Lin SM, Ho SW, Swift S, Williams P (2005) The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol 187:3407–3414

    Article  CAS  PubMed  Google Scholar 

  16. Luers F, Seyfried M, Daniel R, Gottschalk G (1997) Glycerol conversion to 1,3-propanediol by clostridium pasteurianum: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. FEMS Microbiol Lett 154:337–345

    Article  CAS  PubMed  Google Scholar 

  17. Macis L, Daniel R, Gottschalk G (1998) Properties and sequence of the coenzyme B12-dependent glycerol dehydratase of clostridium pasteurianum. FEMS Microbiol Lett 164:21–28

    Article  CAS  PubMed  Google Scholar 

  18. Menzel K, Zeng AP, Biebl H, Deckwer WD (1996) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: I. The phenomena and characterization of oscillation and hysteresis. Biotechnol Bioeng 52:549–560

    Article  CAS  PubMed  Google Scholar 

  19. Menzel K, Zeng AP, Deckwer WD (1997) Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. J Biotechnol 56:135–142

    Article  CAS  PubMed  Google Scholar 

  20. Mohan Raj S, Rathnasingh C, Jung WC, Park S (2009) Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli. Appl Microbiol Biotechnol 84:649–657

    Article  CAS  PubMed  Google Scholar 

  21. Nemeth A, Kupcsulik B, Sevella B (2003) 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World J Microbiol Biotechnol 19:659–663

    Article  CAS  Google Scholar 

  22. Prentki P, Krisch HM (1984) In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313

    Article  CAS  PubMed  Google Scholar 

  23. Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180:767–772

    CAS  PubMed  Google Scholar 

  24. Seifert C, Bowien S, Gottschalk G, Daniel R (2001) Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur J Biochem 268:2369–2378

    Article  CAS  PubMed  Google Scholar 

  25. Seo MY, Seo JW, Heo SY, Baek JO, Rairakhwada D, Oh BR, Seo PS, Choi MH, Kim CH (2009) Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl Microbiol Biotechnol 84:527–534

    Article  CAS  PubMed  Google Scholar 

  26. Seyfried M, Daniel R, Gottschalk G (1996) Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. J Bacteriol 178:5793–5796

    CAS  PubMed  Google Scholar 

  27. Skraly FA, Lytle BL, Cameron DC (1998) Construction and characterization of a 1,3-propanediol operon. Appl Environ Microbiol 64:98–105

    CAS  PubMed  Google Scholar 

  28. Soo PC, Wei JR, Horng YT, Hsieh SC, Ho SW, Lai HC (2005) Characterization of the dapA-nlpB genetic locus involved in regulation of swarming motility, cell envelope architecture, hemolysin production, and cell attachment ability in Serratia marcescens. Infect Immun 73:6075–6084

    Article  CAS  PubMed  Google Scholar 

  29. Sun J, van den Heuvel J, Soucaille P, Qu Y, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263–272

    Article  CAS  PubMed  Google Scholar 

  30. Tobimatsu T, Azuma M, Matsubara H, Takatori H, Niida T, Nishimoto K, Satoh H, Hayashi R, Toraya T (1996) Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae. J Biol Chem 271:22352–22357

    Article  CAS  PubMed  Google Scholar 

  31. Tong IT, Liao HH, Cameron DC (1991) 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon. Appl Environ Microbiol 57:3541–3546

    CAS  PubMed  Google Scholar 

  32. Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917–926

    Article  CAS  PubMed  Google Scholar 

  33. Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259

    CAS  PubMed  Google Scholar 

  34. Zeng AP, Ross A, Biebl H, Tag C, Gunzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of clostridium butyricum and klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911

    Article  CAS  PubMed  Google Scholar 

  35. Zheng P, Wereath K, Sun JB, van den Heuvel J, Zeng AP (2006) Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochemistry 41:2160–2169

    Article  CAS  Google Scholar 

  36. Zhu MM, Lawman PD, Cameron DC (2002) Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol Prog 18:694–699

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Council (NSC-97-2320-B-320-012-MY3) which were really appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Chi Soo.

Additional information

Yu-Tze Horng and Kai-Chih Chang contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horng, YT., Chang, KC., Chou, TC. et al. Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae . J Ind Microbiol Biotechnol 37, 707–716 (2010). https://doi.org/10.1007/s10295-010-0714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-010-0714-9

Keywords

Navigation