Skip to main content
Log in

Hydrolysis of soy isoflavone glycosides by recombinant β-glucosidase from hyperthermophile Thermotoga maritima

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A recombinant Thermotoga maritima β-glucosidase A (BglA) was purified to homogeneity for performing enzymatic hydrolysis of isoflavone glycosides from soy flour. The kinetic properties K m, k cat, and k cat/K m of BglA towards isoflavone glycosides, determined using high-performance liquid chromatography, confirmed the higher efficiency of BglA in hydrolyzing malonylglycosides than non-conjugated glycosides (daidzin and genistin). During hydrolysis of soy flour by BglA at 80°C, the isoflavone glycosides (soluble form) were extracted from soy flour (solid state) into the solution (liquid state) in thermal condition and converted to their aglycones (insoluble form), which mostly existed in the pellet to be separated from BglA in the reaction solution. The enzymatic hydrolysis in one-step and two-step approaches yielded 0.38 and 0.35 mg genistein and daidzein per gram of soy flour, respectively. The optimum conditions for conversion of isoflavone aglycones were 100 U per gram of soy flour, substrate concentration 25% (w/v), and incubation time 3 h for 80°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kaya M, Ito J, Kotaka A, Matsumura K, Bando H, Sahara H, Ogino C, Shibasaki S, Kuroda K, Ueda M, Kondo A, Hata Y (2008) Isoflavone aglycones production by display of β-glucosidase from on yeast cell surface. Appl Microbiol Biotechnol 79:51–60

    Article  CAS  PubMed  Google Scholar 

  2. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 130:1695–1699

    CAS  PubMed  Google Scholar 

  3. Kawakami Y, Tsurugasaki W, Nakamura S, Osada K (2005) Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J Nutr Biochem 16:205–212

    Article  CAS  PubMed  Google Scholar 

  4. Xu X, Hariss KS, Wang HJ, Murphy PA, Hendrich S (1995) Bioavailability of soy isoflavones depends upon gut microflora in women. J Nutr 125:2307–2315

    CAS  PubMed  Google Scholar 

  5. Brown KD, Brown NM, Zimmer-Nechemias L, Brashear WT, Wolfe BE, Kirschner AS, Heubi JE (2002) Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76:447–453

    PubMed  Google Scholar 

  6. Kao TH, Chien JT, Chen BH (2008) Extraction yield of isoflavones from soy cake as affected by solvent and supercritical carbon dioxide. Food Chem 107:1728–1736

    Article  CAS  Google Scholar 

  7. Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT (2006) Hydrolysis of black soy isoflavone glycosides by Bacillus subtilis natto. Appl Microbiol Biotechnol 73:314–320

    Article  CAS  PubMed  Google Scholar 

  8. Chuankhayan P, Rimlumduan T, Svasti J, Cairns JRK (2007) Hydrolysis of soy isoflavonoid glycosides by Dalbergia β-glucosidases. J Agric Food Chem 55:2407–2412

    Article  CAS  PubMed  Google Scholar 

  9. Eisen B, Ungar Y, Shimoni E (2003) Stability of isoflavones in soy milk stored at elevated and ambient temperature. J Agric Food Chem 51:2212–2215

    Article  CAS  PubMed  Google Scholar 

  10. Gabelsberger J, Liebl W, Schleifer KH (1993) Purification and properties of recombinant β-glucosidase of the hyperthermophilic bacterium Thermotoga maritima. Appl Microbiol Biotechnol 40:44–52

    Article  CAS  Google Scholar 

  11. Xue YM, Shao WL (2004) Expression and characterization of a thermostable β-xylosidase from hyperthermophile Thermotoga maritima. Biotechnol Lett 26:1511–1515

    Article  CAS  PubMed  Google Scholar 

  12. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  13. Briante R, Cara FL, Febbraio F, Barone R, Piccialli G, Carolla R, Mainolfi P, Napoli LD, Patumi M, Fontanazza G, Nucci R (2000) Hydrolysis of oleuropein by recombinant β-glycosidase from hyperthermophilic archaeon Sulfolobus solfataricus immobilised on chitosan matrix. J Biotechnol 77:275–286

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki H, Watanabe R, Fukushima Y, Fujita N, Noguchi A, Yokoyama R, Nishitani K, Nishino T, Nakayama T (2006) An isoflavone conjugate-hydrolyzing β-glucosidase from the roots of soy (Glycine max) seedlings. J Biol Chem 281(40):30251–30259

    Article  CAS  PubMed  Google Scholar 

  15. Mathias K, Baraem I, Carlos MC, Kirby DH (2006) Heat and pH effects on the conjugated forms of genistin and daidzin isoflavones. J Agric Food Chem 54:7495–7502

    Article  CAS  PubMed  Google Scholar 

  16. Jiang DH, Tian JJ, Song HZ, Bai ZM (2008) Comparison between hydrolysis methods of soy isoflavones. Cereal Food Ind 15(1):25–27

    CAS  Google Scholar 

  17. Ravindranath MH, Muthugounder S, Presser N, Viswanathan S (2004) Anticancer therapeutic potential of soy isoflavone, genistein. Adv Exp Med Biol 546:121–165

    PubMed  Google Scholar 

  18. Lamartiniere CA (2000) Protection against breast cancer with genistein: a component of soy. Am J Clin Nutr 71(6):1705–1707

    Google Scholar 

  19. Weaver CM, Cheong JM (2005) Soy isoflavones and bone health: the relationship is still unclear. J Nutr 135:1243–1247

    CAS  PubMed  Google Scholar 

  20. Cotter A, Cashman KD (2003) Genistein appears to prevent early postmenopausal bone loss as effectively as hormone replacement therapy. Nutr Rev 61:346–351

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Prof. Shao, W.L., for the suggestions for this research. This work was supported by NSF of Jiangsu Province of China (project BK2006220), by NSF of the Higher School of Jiangsu Province of China (project 05KJB180059), and by a grant from Nanjing Normal University (04104XGQ2B59).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yemin Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, Y., Yu, J. & Song, X. Hydrolysis of soy isoflavone glycosides by recombinant β-glucosidase from hyperthermophile Thermotoga maritima . J Ind Microbiol Biotechnol 36, 1401–1408 (2009). https://doi.org/10.1007/s10295-009-0626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0626-8

Keywords

Navigation