Skip to main content

Advertisement

Log in

Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Heterotrophic fermentation of microalgae has been shown to accumulate high amounts of microalgal lipids, which are regarded as one of the most promising feedstocks for sustainable biodiesel production. To increase the biomass and reduce the cost of microalgal culture, the purpose of this study was to evaluate the possibility of using cassava starch hydrolysate (CSH) instead of glucose as carbon source for heterotrophic culture of Chlorella protothecoides in flasks. First, the two-step enzymatic process of hydrolysis of cassava starch by α-amylase and glucoamylase was optimized; the conversion efficiency for cassava starch was up to 97.7%, and over 80% of CSH was glucose. Subsequently, we compared heterotrophic cultures of C. protothecoiedes using glucose or CSH as carbon source. The results demonstrated that when using CSH as the organic carbon source, the highest biomass and the maximum total lipid yield obtained were 15.8 and 4.19 g/L, representing increases of 42.3 and 27.7%, respectively, compared to using glucose as the organic carbon source. This suggests that CSH is a better carbon source than glucose for heterotrophic Chlorella protothecoides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60(5):497–503

    Article  CAS  PubMed  Google Scholar 

  2. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  3. Gordillo FJL, Goutx M, Figueroa FL, Niell FX (1998) Effects of light intensity, CO2 and nitrogen supply on lipid class composition of Dunaliella viridis. J Appl Phycol 10:135–144

    Article  CAS  Google Scholar 

  4. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27:631–635

    Article  CAS  PubMed  Google Scholar 

  5. Li XF, Xu H, Wu QY (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Phycol 17:551–556

    Article  CAS  Google Scholar 

  7. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  PubMed  Google Scholar 

  8. Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722

    Article  CAS  PubMed  Google Scholar 

  9. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  10. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846

    Article  CAS  PubMed  Google Scholar 

  11. Mujoo R, Ali SZ (1998) Susceptibility of starch to in vitro enzyme hydrolysis in rice, rice flakes and intermediary products. Lebensm Wiss Technol 31:114–121

    Article  CAS  Google Scholar 

  12. Nirmala M, Muralikrishna G (2003) In vitro digestibility studies of cereal flours and starches using purified finger millet (Eleusine coracana, ragi, Indaf-15) amylases. Carbohydr Polym 52:275–283

    Article  CAS  Google Scholar 

  13. Takagi M, Watanabe K, Yamaberi K, Yoshida T (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol 54:112–117

    Article  CAS  PubMed  Google Scholar 

  14. Takagi M, Karseno S, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101:223–226

    Article  CAS  PubMed  Google Scholar 

  15. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  16. Wei D, Liu LJ (2008) Optimization of culture medium for heterotrophic Chlorella protothecoides producing total fatty acids. Chem Bioeng 25(3):35–38

    Google Scholar 

  17. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Appl Microbiol Biotechnol 78:29–36

    Article  CAS  PubMed  Google Scholar 

  18. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by NSF Guangdong Joint project U0633009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewu Zhang or Shang-Tian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, A., Zhang, X., Wei, D. et al. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides . J Ind Microbiol Biotechnol 36, 1383–1389 (2009). https://doi.org/10.1007/s10295-009-0624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-009-0624-x

Keywords

Navigation